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Motivation — End-Hosts in Multi-Tenant DCNs

* End-hosts are the first place where tenants collide in multi-tenant DCNs
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Motivation — Network Policy in End-Hosts

* Inter-tenant isolation: a flat policy specifies weights among tenants

* Intra-tenant isolation: a hierarchical policy generally specifies priority
among applications within a tenant
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Motivation — Increase of NIC Line-Rates

* 10Gbps NICs are commonly deployed in today’s data centers

* NICs of over 40Gbps are already on the market

Intel X520-DA2 10G NIC
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Motivation — Multi-Queue (MQ) NICs

* 10Gbps and beyond NICs support multiple hardware queues

* Enables parallelized packet transmission for multi-core systems
* Higher CPU efficiency than single-queue NICs

e Scales across tens of CPU cores
* e.g. Intel X520-DA2 supports 64 queues

* Essential to achieve line-rate for 10Gbps and beyond NICs

&eﬁwuﬂc and Securily Research Lab.
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Motivation — Packet Scheduling with MQ-NICs

* NIC becomes the ultimate policy enforcement point
* With single-queue NICs, the qdisc is responsible for policy enforcement
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Motivation — Policy Violation with MQ-NICs

* MQ-NICs support only a round-robin (RR) scheduler
e Cannot enforce network policy at all due to hardware constraint
* Rich packet scheduling in the gdisc cannot be preserved in the NIC
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Motivation — How to solve the dilemma?

* Straightforward solution: designing new NIC hardware!

* Loom [NSDI'19]: ASIC with programmable packet schedulers
* Only supports 2048 flows at line-rate

* FlexNIC [ASPLOS’16], PANIC [HotNets’18]: programmable NIC hardware
* ASIC with rich built-in packet schedulers

* Fundamental limitations of hardware solutions
* Burdensome replacement costs: tens of thousands of NICs in the data center

* A lot of time to deploy in practice: several years for commercialization and
manufacturing

[Loom] B. Stephens, A. Akella, and M. Swift, “Loom: Flexible and efficient NIC packet scheduling,” in Proc. of USENIX NSDI, 2019.

muﬂc and Securily Research Lab.



Motivation - Problem and Requirements

* Q: how to enforce network policy in end-hosts with
commodity MQ-NICs?

* Inter-tenant isolation: should be able to share bandwidth fairly
among tenants with different weights

* Intra-tenant isolation: should be able to prioritize latency-sensitive
traffic within a tenant

e Commodity NIC support: should be work with commodity MQ-NICs

muﬂc and Securily Research Lab.



Design — Key Idea of TONIC

* Key insight: NIC packet enqueueing decisions happen in the OS, not in the
NIC

* May be able to approximate various packet schedulers indirectly

* TONIC dynamically enqueues packets in software to manipulate the
packet dequeueing sequence of the hardware scheduler
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Designh — Overview

 Stepl : internal array initialization and CPU/IRQ affinity configuration
* Step2: ensures inter-tenant isolation by leveraging multiple Tx queues
e Step3: ensures intra-tenant isolation by head buffering
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Design — Policy Initialization

* With SLA, operators know network policy information including:
e # of CPU cores
* Tenant weights
* Port numbers of high priority applications (if specified)

* TONIC maintains the following 4 arrays
* Tenant mapping array: tenant-core mapping using sender cpu metadata
e Tenant weight array: the index range of tenant queues in ascending order
e Tenant start index array: the first queue index for each tenant
* Port number array: port numbers of applications should be prioritized

muﬂc and Securily Research Lab.



Design — Flat Policy Enforcement

* Leverages the mismatch between # of queues and tenants in an end-host

* MQ-NICs support many queues (e.g. 64 queues in Intel 82599 NICs)
* Applications require tens of containers with many CPU cores
* Each tenant runs several applications in end-hosts

* Tenant weights are expressed by the number of queues
* Updates queue mapping metadata

MTU: 1500 Bytes

~—~——_ -~ [
BpR;:1500 Y Tenant 1 11 N
BpR: = o Round 1 28 Round 1
PR: Bytes per Tenantl 11| | @ e ——
Round A Tenant2 22| & |—» P2bl1l22l1
Q| 22/11212]1 >
T H (] W
enant 2 |2(212|12 8 — I o
—| = Round 2 Tenant 2 22 % Round 2
BpR,:3000 ® =
NIC Wire NIC Wire
mﬁhg;k Research Lab.

WRR TONIC



Design — Hierarchical Policy Enforcement

* Leverages a double-ended queue structure of the qdisc
* TONIC buffers the packet to the head of qdisc if the application has high priority
* TONIC sets priority metadata to 1, and the parent qdisc performs head buffering
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Implementation

* Implemented as NETFILTER module in Linux kernel 4.4
e Shim layer between the network stack and the qgdisc layer
* Updates queue mapping and priority metadata
* Disabled XPS since it overwrites queue mapping
* Modified multiq qdisc module to perform head buffering

* Each tenant is isolated by Linux cgroups




Evaluation

e Testbed setup
* Two servers connected to a 10Gbps switch
e Servers are with Intel X520-DA2 82599 10Gbps NIC supporting 64 hardware queues
* Enabled TSO and LRO to reduce CPU overhead

* Compared scheme

e XPS: the state-of-the-art MQ-NIC solution in the current Linux kernel

* Matches each CPU core with each Tx queue to support parallel packet processing
* Packets are buffered into the matched Tx queue of the CPU core generated the packet




Evaluation — Equal Fair Sharing

* Two tenants with the equal weights
 Tenant 1 has 8 flows while tenant 2 has {8,16,32,64} flows
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TONIC ensures almost equal sharing regardless of the number of flows per tenant

mt)rk and Securily Research Lab.



Evaluation — Weighted Fair Sharing

* Three tenants with weights of 1:2:3
e Each tenant has {8,16,32} flows, respectively
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TONIC respects the assigned weights regardless of different number of flows

&eﬁwuﬂc and Securily Research Lab.



Evaluation — Traffic Prioritization

* Two tenants with the equal weight

* Tenant 1 runs iperr only while tenant 2 runs iperr and sockpert
+ sockperf has higher priority than iperf within tenant 2
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TONIC preserves inter-tenant isolation and achieves intra-tenant isolation as well

&eﬁwuﬂc and Securily Research Lab.



Evaluation — Results with KVS

* The same settings with the previous experiment except that tenant 2 uses
memcached KVS instead of sockpers
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TONIC can improve the performance of real DC applications by
@htLab enforcing network policy with commodity MQ-NICs
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Summary of TONIC

. Prigb;em: how to enforce network policy in end-hosts with commodity MQ-
NICs:

e Key idea: approximates various packet scheduling algorithms by
manipulating the packet dequeueing sequence of hardware schedulers
through dynamic packet enqueueing decisions in software

* TONIC: an end-host packet scheduling solution that enables network policy
enforcement with commodity MQ-NICs

* Expresses tenant weights as the number of assigned Tx queues
* Prioritizes high priority traffic through head buffering in the qdisc

* Results
* Preserves equal sharing and weighted fair sharing regardless of # of flows

. ]IcEr]sures traffic prioritization within a tenant while maintaining inter-tenant
airness

* Memcached experiments suggest that TONIC can enhance the performance
N of real DC applications




