
Network Policy Enforcement with
Commodity Multiqueue NICs for Multi-

Tenant Data Centers

IEEE Internet of Things Journal, April 2022.

Gyuyeong Kim and Wonjun Lee

1

Motivation – End-Hosts in Multi-Tenant DCNs

• End-hosts are the first place where tenants collide in multi-tenant DCNs

2

Tenant 1 Tenant 2

NIC

qdisc (TC)

Wire

Motivation – Network Policy in End-Hosts

• Inter-tenant isolation: a flat policy specifies weights among tenants

• Intra-tenant isolation: a hierarchical policy generally specifies priority
among applications within a tenant

3

1 2

WRR

1

𝑤1: 3 𝑤2: 2

𝑝1
1: 1 𝑝1

2: 0

FIFO

Root

Hierarchical policy
(Intra-tenant isolation)

Flat policy
(Inter-tenant isolation)

Tenant 1 Tenant 2

Applications of of tenant 1 Application of of tenant 2

SPQ

Motivation – Increase of NIC Line-Rates

• 10Gbps NICs are commonly deployed in today’s data centers

• NICs of over 40Gbps are already on the market

4
Intel X520-DA2 10G NIC

Motivation – Multi-Queue (MQ) NICs

• 10Gbps and beyond NICs support multiple hardware queues
• Enables parallelized packet transmission for multi-core systems

• Higher CPU efficiency than single-queue NICs

• Scales across tens of CPU cores

• e.g. Intel X520-DA2 supports 64 queues

• Essential to achieve line-rate for 10Gbps and beyond NICs

5

Motivation – Packet Scheduling with MQ-NICs

• NIC becomes the ultimate policy enforcement point
• With single-queue NICs, the qdisc is responsible for policy enforcement

6

Traditional policy
enforcement point

Policy enforcement
point with MQ-NICs

Motivation – Policy Violation with MQ-NICs

• MQ-NICs support only a round-robin (RR) scheduler
• Cannot enforce network policy at all due to hardware constraint

• Rich packet scheduling in the qdisc cannot be preserved in the NIC

7

Weighted fair sharing Traffic prioritization

Line-rate throughput Policy enforcement

Single-Queue NIC Ｘ ○

Multi-Queue NIC ○ Ｘ

Motivation – How to solve the dilemma?

• Straightforward solution: designing new NIC hardware!
• Loom [NSDI’19]: ASIC with programmable packet schedulers

• Only supports 2048 flows at line-rate

• FlexNIC [ASPLOS’16], PANIC [HotNets’18]: programmable NIC hardware

• ASIC with rich built-in packet schedulers

• Fundamental limitations of hardware solutions
• Burdensome replacement costs: tens of thousands of NICs in the data center

• A lot of time to deploy in practice: several years for commercialization and
manufacturing

8

[Loom] B. Stephens, A. Akella, and M. Swift, “Loom: Flexible and efficient NIC packet scheduling,” in Proc. of USENIX NSDI, 2019.

Motivation - Problem and Requirements

• Q: how to enforce network policy in end-hosts with
commodity MQ-NICs?

• Inter-tenant isolation: should be able to share bandwidth fairly
among tenants with different weights

• Intra-tenant isolation: should be able to prioritize latency-sensitive
traffic within a tenant

• Commodity NIC support: should be work with commodity MQ-NICs

9

Design – Key Idea of TONIC

• Key insight: NIC packet enqueueing decisions happen in the OS, not in the
NIC
• May be able to approximate various packet schedulers indirectly

• TONIC dynamically enqueues packets in software to manipulate the
packet dequeueing sequence of the hardware scheduler

10

Design – Overview

• Step1 : internal array initialization and CPU/IRQ affinity configuration

• Step2: ensures inter-tenant isolation by leveraging multiple Tx queues

• Step3: ensures intra-tenant isolation by head buffering

11

OS

Qdisc 1

NIC

Qdisc 2

N
IC

 S
c
h
e
d
u
le

r

Qdisc 3

TxQ 1

TxQ 2

TxQ 3

Qdisc 𝑛 TxQ 𝑛

T
C

P
/IP

 S
ta

c
k

Step 1:Policy

initialization

Step 2:Flat policy

enforcement

Step 3:Hierarchical

policy enforcement

TONIC Qdisc (Software) Tx queue (Hardware)

11

11

2

Design – Policy Initialization

• With SLA, operators know network policy information including:
• # of CPU cores

• Tenant weights

• Port numbers of high priority applications (if specified)

• TONIC maintains the following 4 arrays
• Tenant mapping array: tenant-core mapping using sender_cpu metadata

• Tenant weight array: the index range of tenant queues in ascending order

• Tenant start index array: the first queue index for each tenant

• Port number array: port numbers of applications should be prioritized

12

Design – Flat Policy Enforcement

• Leverages the mismatch between # of queues and tenants in an end-host
• MQ-NICs support many queues (e.g. 64 queues in Intel 82599 NICs)

• Applications require tens of containers with many CPU cores

• Each tenant runs several applications in end-hosts

• Tenant weights are expressed by the number of queues
• Updates queue_mapping metadata

13
NIC

Packet Sch
ed

u
ler

𝐵𝑝𝑅1: 1500

𝐵𝑝𝑅2:3000

11

222

Wire

2
122122

Round 1

Round 2

Tenant 1

Tenant 2

MTU: 1500 Bytes

NIC

Packet Sch
ed

u
ler

11

22 122122

Wire

Round 1

Round 2
22

Tenant 1

Tenant 2

Tenant 2

WRR TONIC

𝐵𝑝𝑅: Bytes per
Round

Design – Hierarchical Policy Enforcement

• Leverages a double-ended queue structure of the qdisc
• TONIC buffers the packet to the head of qdisc if the application has high priority

• TONIC sets priority metadata to 1, and the parent qdisc performs head buffering

14

SPQ
TONIC Hier.

NIC Wire

Packet Sch
ed

u
ler

Round 1

Round 2

High Prio.

Low Prio.

Packet Sch
ed

u
ler

Round 1

Round 2

Round 3
Tail Enq.

Head Enq.

NIC Wire

Packet Sch
ed

u
ler

Round 1

Round 2

Tenant 1

Tenant 2
NIC Wire

TONIC

Implementation

• Implemented as NETFILTER module in Linux kernel 4.4
• Shim layer between the network stack and the qdisc layer

• Updates queue_mapping and priority metadata

• Disabled XPS since it overwrites queue_mapping

• Modified multiq qdisc module to perform head buffering

• Each tenant is isolated by Linux cgroups

15

Evaluation

• Testbed setup
• Two servers connected to a 10Gbps switch

• Servers are with Intel X520-DA2 82599 10Gbps NIC supporting 64 hardware queues

• Enabled TSO and LRO to reduce CPU overhead

• Compared scheme
• XPS: the state-of-the-art MQ-NIC solution in the current Linux kernel

• Matches each CPU core with each Tx queue to support parallel packet processing

• Packets are buffered into the matched Tx queue of the CPU core generated the packet

16

Evaluation – Equal Fair Sharing

• Two tenants with the equal weights

• Tenant 1 has 8 flows while tenant 2 has {8,16,32,64} flows

17

XPS TONIC

TONIC ensures almost equal sharing regardless of the number of flows per tenant

Evaluation – Weighted Fair Sharing

• Three tenants with weights of 1:2:3

• Each tenant has {8,16,32} flows, respectively

18

XPS TONIC

TONIC respects the assigned weights regardless of different number of flows

Evaluation – Traffic Prioritization

• Two tenants with the equal weight

• Tenant 1 runs iperf only while tenant 2 runs iperf and sockperf
• sockperf has higher priority than iperf within tenant 2

19

Packet latency of tenant 2 and throughput fairness

TONIC preserves inter-tenant isolation and achieves intra-tenant isolation as well

Evaluation – Results with KVS

• The same settings with the previous experiment except that tenant 2 uses
memcached KVS instead of sockperf

20

The average QCT of memcached with different item sizes

TONIC can improve the performance of real DC applications by
enforcing network policy with commodity MQ-NICs

Summary of TONIC

• Problem: how to enforce network policy in end-hosts with commodity MQ-
NICs?

• Key idea: approximates various packet scheduling algorithms by
manipulating the packet dequeueing sequence of hardware schedulers
through dynamic packet enqueueing decisions in software

• TONIC: an end-host packet scheduling solution that enables network policy
enforcement with commodity MQ-NICs
• Expresses tenant weights as the number of assigned Tx queues
• Prioritizes high priority traffic through head buffering in the qdisc

• Results
• Preserves equal sharing and weighted fair sharing regardless of # of flows
• Ensures traffic prioritization within a tenant while maintaining inter-tenant

fairness
• Memcached experiments suggest that TONIC can enhance the performance

of real DC applications
21

