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Motivation – End-Hosts in Multi-Tenant DCNs

• End-hosts are the first place where tenants collide in multi-tenant DCNs
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Motivation – Network Policy in End-Hosts

• Inter-tenant isolation: a flat policy specifies weights among tenants 

• Intra-tenant isolation: a hierarchical policy generally specifies priority 
among applications within a tenant
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Motivation – Increase of NIC Line-Rates

• 10Gbps NICs are commonly deployed in today’s data centers

• NICs of over 40Gbps are already on the market
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Motivation – Multi-Queue (MQ) NICs

• 10Gbps and beyond NICs support multiple hardware queues
• Enables parallelized packet transmission for multi-core systems

• Higher CPU efficiency than single-queue NICs

• Scales across tens of CPU cores

• e.g. Intel X520-DA2 supports 64 queues

• Essential to achieve line-rate for 10Gbps and beyond NICs
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Motivation – Packet Scheduling with MQ-NICs

• NIC becomes the ultimate policy enforcement point 
• With single-queue NICs, the qdisc is responsible for policy enforcement
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Motivation – Policy Violation with MQ-NICs

• MQ-NICs support only a round-robin (RR) scheduler
• Cannot enforce network policy at all due to hardware constraint

• Rich packet scheduling in the qdisc cannot be preserved in the NIC
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Motivation – How to solve the dilemma?

• Straightforward solution: designing new NIC hardware!
• Loom [NSDI’19]: ASIC with programmable packet schedulers

• Only supports 2048 flows at line-rate

• FlexNIC [ASPLOS’16], PANIC [HotNets’18]: programmable NIC hardware

• ASIC with rich built-in packet schedulers

• Fundamental limitations of hardware solutions
• Burdensome replacement costs: tens of thousands of NICs in the data center

• A lot of time to deploy in practice: several years for commercialization and 
manufacturing
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Motivation - Problem and Requirements

• Q: how to enforce network policy in end-hosts with
commodity MQ-NICs?

• Inter-tenant isolation: should be able to share bandwidth fairly
among tenants with different weights

• Intra-tenant isolation: should be able to prioritize latency-sensitive
traffic within a tenant

• Commodity NIC support: should be work with commodity MQ-NICs
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Design – Key Idea of TONIC

• Key insight: NIC packet enqueueing decisions happen in the OS, not in the 
NIC
• May be able to approximate various packet schedulers indirectly

• TONIC dynamically enqueues packets in software to manipulate the 
packet dequeueing sequence of the hardware scheduler 
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Design – Overview

• Step1 : internal array initialization and CPU/IRQ affinity configuration

• Step2: ensures inter-tenant isolation by leveraging multiple Tx queues

• Step3: ensures intra-tenant isolation by head buffering
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Design – Policy Initialization

• With SLA, operators know network policy information including:
• # of CPU cores

• Tenant weights

• Port numbers of high priority applications (if specified)

• TONIC maintains the following 4 arrays
• Tenant mapping array: tenant-core mapping using sender_cpu metadata

• Tenant weight array: the index range of tenant queues in ascending order

• Tenant start index array: the first queue index for each tenant

• Port number array: port numbers of applications should be prioritized
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Design – Flat Policy Enforcement

• Leverages the mismatch between # of queues and tenants in an end-host
• MQ-NICs support many queues (e.g. 64 queues in Intel 82599 NICs)

• Applications require tens of containers with many CPU cores

• Each tenant runs several applications in end-hosts

• Tenant weights are expressed by the number of queues
• Updates queue_mapping metadata 
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Design – Hierarchical Policy Enforcement

• Leverages a double-ended queue structure of the qdisc
• TONIC buffers the packet to the head of qdisc if the application has high priority

• TONIC sets priority metadata to 1, and the parent qdisc performs head buffering
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Implementation

• Implemented as NETFILTER module in Linux kernel 4.4
• Shim layer between the network stack and the qdisc layer

• Updates queue_mapping and priority metadata 

• Disabled XPS  since it overwrites queue_mapping

• Modified multiq qdisc module to perform head buffering

• Each tenant is isolated by Linux cgroups
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Evaluation

• Testbed setup
• Two servers connected to a 10Gbps switch

• Servers are with Intel X520-DA2 82599 10Gbps NIC supporting 64 hardware queues

• Enabled TSO and LRO to reduce CPU overhead

• Compared scheme
• XPS: the state-of-the-art MQ-NIC solution in the current Linux kernel

• Matches each CPU core with each Tx queue to support parallel packet processing

• Packets are buffered into the matched Tx queue of the CPU core generated the packet
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Evaluation – Equal Fair Sharing

• Two tenants with the equal weights

• Tenant 1 has 8 flows while tenant 2 has {8,16,32,64} flows
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Evaluation – Weighted Fair Sharing

• Three tenants with weights of 1:2:3

• Each tenant has {8,16,32} flows, respectively
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Evaluation – Traffic Prioritization

• Two tenants with the equal weight

• Tenant 1 runs iperf only while tenant 2 runs iperf and sockperf
• sockperf has higher priority than iperf within tenant 2
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Evaluation – Results with KVS

• The same settings with the previous experiment except that tenant 2 uses 
memcached KVS instead of sockperf
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TONIC can improve the performance of real DC applications by 
enforcing network policy with commodity MQ-NICs



Summary of TONIC

• Problem: how to enforce network policy in end-hosts with commodity MQ-
NICs?

• Key idea: approximates various packet scheduling algorithms by
manipulating the packet dequeueing sequence of hardware schedulers
through dynamic packet enqueueing decisions in software

• TONIC: an end-host packet scheduling solution that enables network policy
enforcement with commodity MQ-NICs
• Expresses tenant weights as the number of assigned Tx queues
• Prioritizes high priority traffic through head buffering in the qdisc

• Results
• Preserves equal sharing and weighted fair sharing regardless of # of flows
• Ensures traffic prioritization within a tenant while maintaining inter-tenant

fairness
• Memcached experiments suggest that TONIC can enhance the performance

of real DC applications
21


