Network Policy Enforcement with
Commodity Multiqueue NICs for Multi-
Tenant Data Centers

IEEE Internet of Things Journal, April 2022.

Gyuyeong Kim and Wonjun Lee

KOREA

UNIVERSITY

Motivation — End-Hosts in Multi-Tenant DCNs

* End-hosts are the first place where tenants collide in multi-tenant DCNs

4 Tenant1) [~ Tenant 2 A
hadaa are h

| sexicot
J
S &
msnv\ \

gdisc (TC)

¥

NIC

Li

Wire

Motivation — Network Policy in End-Hosts

* Inter-tenant isolation: a flat policy specifies weights among tenants

* Intra-tenant isolation: a hierarchical policy generally specifies priority
among applications within a tenant

Root
@ Flat policy
(Inter-tenant isolation)

Hierarchical policy
(Intra-tenant isolation)

1. 2,
pi:l p1:0
Applications of of tenant 1 Application of of tenant 2

Motivation — Increase of NIC Line-Rates

* 10Gbps NICs are commonly deployed in today’s data centers

* NICs of over 40Gbps are already on the market

Intel X520-DA2 10G NIC

K
1T
400GbE
ol 100GbE %—
200GbE
Q s O 50GhE
o 406 10GbE O O
= ' @ 2560E
10G | G 40GhE =

© [

0 s 8 5GbE

' 2.5GbE
'% = 100Mb/ O

S
“:é Ethernet
5 100MTos e
Ethernet
10M +—@—
1980 1990 2000 2010 2020
Standard Completed
O Ethernet Speed O Speed in Development
&

Motivation — Multi-Queue (MQ) NICs

* 10Gbps and beyond NICs support multiple hardware queues

* Enables parallelized packet transmission for multi-core systems
* Higher CPU efficiency than single-queue NICs

e Scales across tens of CPU cores
* e.g. Intel X520-DA2 supports 64 queues

* Essential to achieve line-rate for 10Gbps and beyond NICs

&eﬁwuﬂc and Securily Research Lab.

1
—— ~(] Qdisc 1 S » TxQ 1
X Q11
al (2] (2 - 2 i,
S ulf o Qdisc 2 o) » TxQ 2
o +U‘-Lq“.+;r § |
LN
g | 3| |2]] adisc3 || H> ™a3
2§) c
5| 1° o |1
— - —_ 1
1
|_— '/\._ QdiSCH. 7/ :—__ T}(Q”.
NIC

\ JanpaydsoIN |

Wire

Motivation — Packet Scheduling with MQ-NICs

* NIC becomes the ultimate policy enforcement point
* With single-queue NICs, the qdisc is responsible for policy enforcement

= —~(| Qdisc 1 l%—» ™*Q 1 — |
L g z| |
o [» |a Qdisc2 | |8 -‘-DTKQZ o I
= -h:E;. = & 5 e
ARE TQ_ Qdisc 3 gl—»nm s ||
o 3 = = c
TR .15 | U
— I/\l Qdiscn - ™xQn - I
- 0SS T T N T T

Traditional policy Policy enforcement
enforcement point point with MQ-NICs

Motivation — Policy Violation with MQ-NICs

* MQ-NICs support only a round-robin (RR) scheduler
e Cannot enforce network policy at all due to hardware constraint
* Rich packet scheduling in the gdisc cannot be preserved in the NIC

—— ~——
drry W B | QRLRRRRA 2 .
wy:l w v :
o Xpectation 0 Expectation
drry, (222 g — drr, g —
Wsy: 2 c 312/11(3[2/11/312/1 c I |
dzrr 333 § prio § [I
X . . .
. s Reality 1 | Reality
Wj! 3
NIC Wire NIC Wire
Weighted fair sharing Traffic prioritization
Line-rate throughput Policy enforcement
Single-Queue NIC X O
Multi-Queue NIC O X

Motivation — How to solve the dilemma?

* Straightforward solution: designing new NIC hardware!

* Loom [NSDI'19]: ASIC with programmable packet schedulers
* Only supports 2048 flows at line-rate

* FlexNIC [ASPLOS’16], PANIC [HotNets’18]: programmable NIC hardware
* ASIC with rich built-in packet schedulers

* Fundamental limitations of hardware solutions
* Burdensome replacement costs: tens of thousands of NICs in the data center

* A lot of time to deploy in practice: several years for commercialization and
manufacturing

[Loom] B. Stephens, A. Akella, and M. Swift, “Loom: Flexible and efficient NIC packet scheduling,” in Proc. of USENIX NSDI, 2019.

muﬂc and Securily Research Lab.

Motivation - Problem and Requirements

* Q: how to enforce network policy in end-hosts with
commodity MQ-NICs?

* Inter-tenant isolation: should be able to share bandwidth fairly
among tenants with different weights

* Intra-tenant isolation: should be able to prioritize latency-sensitive
traffic within a tenant

e Commodity NIC support: should be work with commodity MQ-NICs

muﬂc and Securily Research Lab.

Design — Key Idea of TONIC

* Key insight: NIC packet enqueueing decisions happen in the OS, not in the
NIC

* May be able to approximate various packet schedulers indirectly

* TONIC dynamically enqueues packets in software to manipulate the
packet dequeueing sequence of the hardware scheduler

1
— Qdisc 1 R » TxQ 1 —
_{
2| 1Bl |5 4y z
Sl [»] |3 Qdisc2 | |A H*» TxQ2 n
S |2 |3 & =
w oa @) > | ! m |Wire
g (3] |2 Qdisc3 | |® > ™xQ3 —
S NERNL e)
- /K-' iscn 7/ 2 TxQn

mt)rk and Securily Research Lab.

Designh — Overview

 Stepl : internal array initialization and CPU/IRQ affinity configuration
* Step2: ensures inter-tenant isolation by leveraging multiple Tx queues
e Step3: ensures intra-tenant isolation by head buffering

TONIC Qdisc (Software) Tx queue (Hardware)
Step 1:Policy [Qdiscl = ™Q1 |1 | —
(—)| initialization . : =
o _ Qdisc2 > TxQ2 [ifll| O
3 I Step 2:Flat policy - : | S b
0 enforcement disc 3 _L> 3 D
o LS [TXQ 9| =
~ || Step 3:Hierarchical 1 @
policy enforcement [l Qdisc n i, TXQ n]/
NIC

11

Design — Policy Initialization

* With SLA, operators know network policy information including:
e # of CPU cores
* Tenant weights
* Port numbers of high priority applications (if specified)

* TONIC maintains the following 4 arrays
* Tenant mapping array: tenant-core mapping using sender cpu metadata
e Tenant weight array: the index range of tenant queues in ascending order
e Tenant start index array: the first queue index for each tenant
* Port number array: port numbers of applications should be prioritized

muﬂc and Securily Research Lab.

Design — Flat Policy Enforcement

* Leverages the mismatch between # of queues and tenants in an end-host

* MQ-NICs support many queues (e.g. 64 queues in Intel 82599 NICs)
* Applications require tens of containers with many CPU cores
* Each tenant runs several applications in end-hosts

* Tenant weights are expressed by the number of queues
* Updates queue mapping metadata

MTU: 1500 Bytes

~—~——_ -~ [
BpR;:1500 Y Tenant 1 11 N
BpR: = o Round 1 28 Round 1
PR: Bytes per Tenantl 11| | @ e ——
Round A Tenant2 22| & |—» P2bl1l22l1
Q| 22/11212]1 >
T H (] W
enant 2 |2(212|12 8 — I o
—| = Round 2 Tenant 2 22 % Round 2
BpR,:3000 ® =
NIC Wire NIC Wire
mﬁhg;k Research Lab.

WRR TONIC

Design — Hierarchical Policy Enforcement

* Leverages a double-ended queue structure of the qdisc
* TONIC buffers the packet to the head of qdisc if the application has high priority
* TONIC sets priority metadata to 1, and the parent qdisc performs head buffering

[
o)
3 | Round 1 —
"'" —— I
n
o
Aulill
—

8‘ Round 2 I
rT e —
| Low Prio. Head Enq.
/

NIC Wire NIC
SPQ

—>

\ 13|Npayods 19¥ded /

Round 3

Round 1

M

_l_l

Round 2

Wire

TONIC

Tenant 1
—
111 A
(@)
ol EX Round 1
f-'- ——
. N
—\a »)4121.71
338z —
o
:@él € | Round?2
®
— |
Tenant 2
NIC Wire
TONIC Hier.

14

Implementation

* Implemented as NETFILTER module in Linux kernel 4.4
e Shim layer between the network stack and the qgdisc layer
* Updates queue mapping and priority metadata
* Disabled XPS since it overwrites queue mapping
* Modified multiq qdisc module to perform head buffering

* Each tenant is isolated by Linux cgroups

Evaluation

e Testbed setup
* Two servers connected to a 10Gbps switch
e Servers are with Intel X520-DA2 82599 10Gbps NIC supporting 64 hardware queues
* Enabled TSO and LRO to reduce CPU overhead

* Compared scheme

e XPS: the state-of-the-art MQ-NIC solution in the current Linux kernel

* Matches each CPU core with each Tx queue to support parallel packet processing
* Packets are buffered into the matched Tx queue of the CPU core generated the packet

Evaluation — Equal Fair Sharing

* Two tenants with the equal weights
 Tenant 1 has 8 flows while tenant 2 has {8,16,32,64} flows

—
o

' ' 10
B [ITenant 1 m
Q " o
o 8 Tenant 2 = 8t
§° = 2 5
 — 6 r : 6 I
= [>
£ 2
o 4 ? 4t
E ol ﬂ S ol
= =
= ﬁ ﬁ =
0 O 0
11 12 14 138 1 12 14 18
Asymmetry ratio Asymmetry ratio
XPS TONIC

TONIC ensures almost equal sharing regardless of the number of flows per tenant

mt)rk and Securily Research Lab.

Evaluation — Weighted Fair Sharing

* Three tenants with weights of 1:2:3
e Each tenant has {8,16,32} flows, respectively

10 . =—Tenant 1
i E— ===Tenant 2 _10
é- gl Tenant 3 é_ gl
Sl — o .
5] ' — 6 - ——————
o ! a \
_: 1 1
o 4' i 1 -ED 4' [| 1
= | 1 ;L-—-\;. ________
S ,| i L S ,| .' ~ _
=] T — E 2 T
— . : = 1
O 1
5 10 15 5 10 15
Time (sec) Time (sec)
XPS TONIC

TONIC respects the assigned weights regardless of different number of flows

&eﬁwuﬂc and Securily Research Lab.

Evaluation — Traffic Prioritization

* Two tenants with the equal weight

* Tenant 1 runs iperr only while tenant 2 runs iperr and sockpert
+ sockperf has higher priority than iperf within tenant 2

3 T T T T T T T XPS 1.U2
o5 —TONIC |,
- >
£ 2r 10.98 T
515k 10.96 &
c @
& =
L'j 1 | . 0.94 E

3 4 5 6 7 8 9 10
Time (sec)

Packet latency of tenant 2 and throughput fairness

TONIC preserves inter-tenant isolation and achieves intra-tenant isolation as well

&eﬁwuﬂc and Securily Research Lab.

Evaluation — Results with KVS

* The same settings with the previous experiment except that tenant 2 uses
memcached KVS instead of sockpers

20

T
Bl XPS
EEITONIC
15+

| J
- I
O 1 1 | |

1 4 8 16
Item Size (KB)

The average QCT of memcached with different item sizes

Avg. QCT (ms)
o

——

i

TONIC can improve the performance of real DC applications by
@htLab enforcing network policy with commodity MQ-NICs

20

Summary of TONIC

. Prigb;em: how to enforce network policy in end-hosts with commodity MQ-
NICs:

e Key idea: approximates various packet scheduling algorithms by
manipulating the packet dequeueing sequence of hardware schedulers
through dynamic packet enqueueing decisions in software

* TONIC: an end-host packet scheduling solution that enables network policy
enforcement with commodity MQ-NICs

* Expresses tenant weights as the number of assigned Tx queues
* Prioritizes high priority traffic through head buffering in the qdisc

* Results
* Preserves equal sharing and weighted fair sharing regardless of # of flows

.]IcEr]sures traffic prioritization within a tenant while maintaining inter-tenant
airness

* Memcached experiments suggest that TONIC can enhance the performance
N of real DC applications

