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Abstract—Data centers are the fundamental component in the
Internet of Things (IoT) system architecture. Data center servers
where IoT services are co-located require hierarchical network
policy enforcement to ensure fair bandwidth sharing among ten-
ants and to prioritize latency-sensitive traffic within a tenant
simultaneously. Meanwhile, emerging network interface cards
(NICs) in servers make use of multiple hardware queues to drive
increasing line rates. Unfortunately, multiqueue NICs make it
hard to enforce hierarchical policies because the NIC packet
scheduler dequeues packets in a static round-robin (RR) fash-
ion for per-flow fairness. In this article, we enable hierarchical
network policy enforcement with existing commodity multiqueue
NICs. We design TONIC, a multiqueue NIC packet schedul-
ing solution that approximates hierarchical packet scheduling by
manipulating the packet dequeueing sequence of the NIC sched-
uler through dynamic packet enqueueing decisions. Specifically,
TONIC leverages multiple hardware queues and the double-
ended queue structure of qdiscs to express different tenant
weights and application priorities without hardware modifica-
tions. We implement a TONIC prototype as a Linux kernel
module and evaluate it on a testbed with commodity multiqueue
NICs. Our experiment results show that TONIC can enforce hier-
archical policies consisting of weighted fair sharing and traffic
prioritization while maintaining robustness to various network
conditions.

Index Terms—Data center networks, Internet of Things (IoT)
system architecture, network interface cards (NICs).

I. INTRODUCTION

DATA centers in edges and clouds are the fundamental
infrastructure for modern Internet of Things (IoT)

services to deal with the deluge of data that IoT devices
generate [1], [2]. To accommodate many IoT services with
high utilization, data center servers are generally shared by
multiple tenants, which run various applications. Each ten-
ant has different network performance requirements depending
on application characteristics. For example, a tenant who
runs Web services may desire to prioritize latency-sensitive
small flows (≤1 kB) [3]–[6] of key-value stores (KVSs) over
throughput-sensitive large flows of batch analytics while main-
taining fair bandwidth sharing among tenants. To satisfy the
requirements, operators apply hierarchical network policies,
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which specify not only the weights among tenants but also
the priorities among tenant applications. To enforce network
policy, the operator commonly combines widely used packet
schedulers, such as weighted round-robin (WRR) and strict
priority queueing (SPQ), in a hierarchical manner.

Meanwhile, the line speed of network interface cards (NICs)
has been increased to deal with tens of thousands of flows.
10-GbE NICs have increasingly replaced 1-GbE NICs, and
100-GbE NICs are already commercially available. These
emerging high-speed NICs provide multiple hardware queues
for parallel packet processing across central processing unit
(CPU) cores because a single core is not enough to achieve
line-rate throughput of the high-speed NICs.

Unfortunately, the use of multiqueues makes it hard to
enforce hierarchical network policies. The traditional pol-
icy enforcement point is the qdisc layer in the operating
system (OS) network stack where the operator can enforce
network policy in software. With multiqueues, the NIC is ulti-
mately responsible for policy enforcement because the NIC
performs packet scheduling across hardware queues. However,
commodity NICs provide only a static round-robin (RR)
scheduler [7]–[9], and this invalidates the OS-level schedul-
ing. This is because the multiqueue NICs are designed to
cooperate with queue assignment mechanisms in the OS. For
example, a per-flow hashing scheme tries to spread flows into
queues uniformly, and the NIC scheduler dequeues packets
from the queues with RR, achieving per-flow fairness. The
current Linux kernel uses transmit packet steering (XPS) [10],
which matches CPU cores and NIC queues one-by-one for
intercore performance isolation.

The primary hurdle to solve the problem is that we
cannot program NIC application-specific-integrated circuits
(ASICs). We may design NIC hardware that adopts recent
programmable scheduling models, such as push-in-first-out
(PIFO) [8], [11], which can express hierarchical packet
scheduling by grouping multiple scheduling blocks. However,
the model can process only a limited number of flows at line
rate (i.e., 2K flows [11], [12]) due to increased processing
delay. Furthermore, this requires a long time to deploy, and
the average hardware refresh cycle is five years [13]. Operators
also upgrade hardware incrementally since it is not feasible to
make a flag day.

In this context, we take one step back and ask the follow-
ing question: can we enforce hierarchical network policies
with existing commodity multiqueue NICs? We answer the
question optimistically by presenting TONIC, a multiqueue
NIC packet scheduling solution that enables hierarchical policy
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enforcement in multitenant servers without hardware modifi-
cations. Our key insight is that although we cannot program
NIC hardware, packet enqueueing decisions are done in the
OS. Based on this insight, TONIC enqueues packets into hard-
ware queues dynamically to manipulate the packet dequeueing
sequence of the static NIC scheduler. This enables us to
approximate widely used work-conserving packet schedulers,
including WRR and SPQ, in a hierarchical manner.

TONIC consists of two stages: 1) tenant-aware queue
assignment and 2) priority-aware packet insertion. The first
stage strictly preserves fair sharing among tenants for inter-
tenant policy enforcement. TONIC reserves a disjoint pool
of hardware queues for each tenant to avoid the traffic colli-
sion with other tenants in the same queue. We express tenant
weights indirectly as the number of assigned hardware queues.
This is based on the observations that commodity NICs pro-
vide abundant number of queues for per-flow fairness and the
number of tenant per server is much less than the number
of queues. TONIC enqueues packets to the assigned queues
evenly to ensure that the NIC scheduler drains packets as much
as weights every round. In the second stage, to preserve traffic
prioritization between applications of a tenant for intratenant
policy enforcement, TONIC leverages the double-ended queue
structure of qdiscs where we can freely enqueue/dequeue pack-
ets to/from the head and tail. TONIC buffers high priority
packets in the head of queues to make the packets jump over
buffered packets. TONIC preserves policy hierarchies by not
modifying the queue index in the second stage.

We implement a TONIC prototype as a Linux kernel mod-
ule and evaluate the performance of TONIC on a testbed
with Intel 82599 X520-DA2 multiqueue NICs. We compare
TONIC with XPS, and make the following observations from
our experiment results. First, TONIC can achieve equal fair
sharing among tenants regardless of the number of compet-
ing flows. Second, TONIC can preserve weighted fair sharing
among tenants with different weights and is robust to tenant
configurations. Third, TONIC can prioritize latency-sensitive
applications, such as memcached [14], within a tenant while
maintaining fair sharing among tenants.

In summary, we make the following contributions.
1) We enable hierarchical network policy enforcement with

commodity multiqueue NICs for edge/cloud data centers
in the IoT architecture.

2) We propose TONIC, a new multiqueue packet schedul-
ing solution that approximates hierarchical scheduling
through dynamic packet enqueueing decisions to over-
come the inflexibility of NIC hardware without hardware
modifications.

3) We comprehensively evaluate TONIC using commod-
ity multiqueue NICs, and demonstrate that TONIC can
enforce both intertenant and intratenant network poli-
cies in a hierarchical manner across a variety of network
conditions.

The remainder of this article is organized as follows. In
Section II, we describe the background and motivation of this
work. Section III provides the detailed design of TONIC. We
present the implementation of TONIC and performance eval-
uation results in Sections IV and V, respectively. We discuss

Fig. 1. Example of a hierarchical network policy.

related work in Section VI. Finally, we conclude our work in
Section VII.

II. BACKGROUND AND MOTIVATION

A. Hierarchical Network Policies

In a server of multitenant data centers, tens of containers or
virtual machines (VMs) are co-located to run IoT applications.
Specifically, it is not rare to run more than 18 containers [15]
and 40–60 VMs [16] per server. The number of tenants per
server is generally much smaller than the number of con-
tainers/VMs because a single tenant commonly owns multiple
containers/VMs to run applications.

Operators apply hierarchical network policies to satisfy
tenant requirements. Network policy can be expressed as
a restricted directed acyclic graph (DAG) [8]. A policy
DAG specifies: 1) intertenant network policy that gener-
ally clarifies how tenants should share the link capacity
and 2) intratenant network policy that specifies the priori-
ties among applications within a tenant. It is important to
ensure intertenant policy since the end host is the first place
where tenants collide in the network. Preserving intratenant
policy is also important since many tenants run latency-
sensitive applications and throughput-sensitive applications
simultaneously [11], [17], [18].

The tenants often want to prioritize latency-sensitive
small flows over throughput-sensitive large flows for bet-
ter user experience. Specifically, flow size distributions in
data centers are heavily skewed. 90% of flows are less than
10 kB [19], [20] and the typical flow size of Web search work-
loads such as KVS is less than 1 kB [3]–[6], [21], [22], which
can be transmitted with a single packet.

Fig. 1 shows an example of a hierarchical network policy. In
the example, tenant 1 and tenant 2 should share link bandwidth
with weights of 3:2. Meanwhile, unlike tenant 1 who runs a
single application, tenant 2 runs two applications and desires
to prioritize the traffic of application 1 over application 2.
Operators should provide hierarchical packet scheduling to
preserve the hierarchy of the specified policy. We need the
WRR scheduler to preserve the intertenant network policy. To
enforce the intratenant policies of the tenants, we need the
first-in–first-out (FIFO) for tenant 1 and SPQ for tenant 2,
respectively. This is because tenant 1 has only one application
whereas tenant 2 has two applications with different priorities.
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TABLE I
SPECIFICATIONS OF SEVERAL COMMODITY MULTIQUEUE

NICS (BW = BANDWIDTH)

(a) (b)

Fig. 2. Aggregate throughput of (a) 40- and (b) 10-GbE NICs with single
queue and multiqueue configurations.

FIFO is a simple scheduling algorithm that dequeues packets
in the order that they arrive in the queue. SPQ is a scheduling
algorithm that dequeues packets in strict priority.

B. Packet Processing With Multiqueues

The line rate of NICs has been scaled to deal with the
increasing network resource demand of modern applications.
10-GbE NICs are today’s commodity, and they have rapidly
replaced 1GbE NICs [21], [23], [24]. In addition, 100-GbE
NICs such as Mellanox ConnectX-5 are already on the market.
The key feature of these high-speed NICs is multiple hard-
ware transmit (Tx) and receive (Rx) queues.1 Table I lists the
specifications of several commodity multiqueue NICs. We can
find that commodity NICs generally support hundreds to thou-
sands of hardware queues. For example, Mellanox ConnectX-5
supports 512 hardware queues.

Multiqueues enable servers to drive line rates of 10 Gb/s and
beyond by processing packets in parallel across multiple CPU
cores without intercore communication overhead. For exam-
ple, a single CPU core cannot achieve the line rate of 40-GbE
NICs even with segmentation offload techniques such as TCP
segmentation offload (TSO), which reduces the CPU resource
usage for packet processing. Fig. 2 shows the results of testbed
experiments that measure the aggregate throughput of multi-
queue NICs with different configurations. To saturate the link
between two servers, we generate six flows using iperf [28].
For the 10-GbE NIC experiment, we disable TSO to show the
impact of multiqueues in detail. In Fig. 2(a), we can see that
the aggregate throughput of the single queue configuration is
limited to 32 Gb/s approximately. From Fig. 2(b), we observe
that a single core cannot drive even 10 Gb/s of line rate when
TSO is disabled.

Fig. 3 shows how packets are transmitted in Linux kernel
with multiqueue NICs. After a packet has passed through the
TCP/IP stack, the OS assigns a Tx queue index to the packet
by updating queue_mapping that denotes the queue index

1In this work, we focus on transmit-side networking. Therefore, NIC
hardware queues in this article indicate Tx queues unless specified.

Fig. 3. Packet transmission with multiqueue NICs.

Fig. 4. Network policy violation with multiqueues.

metadata in the socket buffer structure (SKB). Today’s Linux
kernel supports two queue assignment mechanisms. When
cores are shared by multiple tenants, we can use a per-flow
hash scheme that assigns packets to Tx queues uniformly as
much as possible in flow level by calculating the queue index
through a simple hash algorithm. For servers where each ten-
ant uses dedicated CPU cores, we can use XPS [10] that pins
Tx queues to cores one-to-one. In this regime, packets are
enqueued into the matched Tx queue of the CPU core that
processed the packet. XPS is the default queue assignment
mechanism in the current Linux kernel because it provides
strong performance isolation between cores.

All of the packets are transmitted to the qdisc layer after
Tx queue assignment. The OS creates one child qdisc per
Tx queue under a parent qdisc to synchronize the qdisc layer
and the NIC. Therefore, when n Tx queues exist, n children
qdiscs exist. Each qdisc is a FIFO queue by default. The par-
ent qdisc enqueues the packet into child qdisc i where i is
the index in queue_mapping. The qdisc scheduler performs
RR scheduling across the children qdiscs and the packets are
buffered to the corresponding Tx queue i in the NIC. Each
Tx queue is a ring buffer containing packet descriptors that
point to the SKB. To dequeue packets, the NIC sends hardware
interrupt requests (IRQs) to the CPU by performing per-queue
RR scheduling. After processing IRQs, the packet is finally
transmitted to the wire.

C. Policy Violation by Multiqueue NICs

The packet scheduler of multiqueue NICs performs flat RR
scheduling across hardware queues, and this makes it hard
to enforce hierarchical network policies. The primary reason
behind the static NIC scheduler is that the multiqueue NIC
is designed without awareness to multitenancy. Basically, the
NIC strives to achieve per-flow fairness by cooperating with
the queue assignment mechanisms.

Fig. 4 illustrates an example of policy violation caused by
the NIC scheduler with XPS. We suppose that the qdisc layer
scheduling is properly configured in the OS. While tenant 1
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requires only FIFO, tenant 2 needs SPQ due to competing
applications with different priorities. Meanwhile, the packets
of the two tenants should be scheduled by the WRR sched-
uler with weights of 2:1. However, we can see that the actual
packet dequeueing sequence into the wire is different from the
expectation of OS-level packet scheduling. This is because,
as we have mentioned, the NIC scheduler drains bytes from
competing Tx queues with equal weight regardless of the
qdisc scheduling. A few NICs provide data center bridging
(DCB) [29], which provides QoS configuration between eight
DCB classes. However, DCB supports only plain policies for
the limited number of classes (i.e., tenants).

III. TONIC DESIGN

A. Design Goals

Our goal is to design a solution that enables hierarchical
network policy enforcement in servers with existing commod-
ity multiqueue NICs. We believe that a good solution should
satisfy the following requirements simultaneously.

1) Intertenant Policy Enforcement: A solution should
strictly preserve fair sharing among tenants any time
regardless of traffic dynamics.

2) Intratenant Policy Enforcement: A solution should be
able to prioritize the traffic of preferred applications over
the other applications within a tenant.

3) Hierarchical Policy Enforcement: A solution should
preserve a policy hierarchy while enforcing inter-
tenant/intratenant network policy.

4) Practicality: A solution should support existing com-
modity multiqueue NICs and should not require hard-
ware modifications.

B. Overview and Design Rationale

Packet scheduling requires two decisions: 1) the packet
enqueueing decision and 2) the packet dequeueing decision.
The key challenge to achieve our goal is that we cannot pro-
gram the packet scheduler of commodity NICs even though
the root cause of the policy violation problem is the hardware
packet scheduler. To address the challenge, we pay attention
to that the NIC packet enqueueing decision happens in the OS,
not in the NIC. This implies that although we cannot modify
the packet scheduler of the NIC directly, we may be able to
approximate the behavior of hierarchical packet schedulers by
designing a new NIC packet enqueueing decision mechanism.
Based on this insight, we design TONIC, a multiqueue NIC
packet scheduling solution that dynamically performs packet
enqueueing decisions to manipulate the NIC packet dequeue-
ing sequence, approximating hierarchical packet scheduling
without hardware modifications.

Fig. 5 shows the overview of TONIC. TONIC resides
between the TCP/IP stack and the qdisc layer as a shim
layer. In the Linux architecture with multiqueue qdiscs such
as multiq, the qdiscs are completely synchronized with
hardware queues since the packets in the qdisc layer are
scheduled with RR as same as in the NIC. This means that
the qdisc layer and the NIC have the same packet enqueue-
ing/dequeueing sequence. The parent qdisc buffers a packet

Fig. 5. Overview of TONIC. TONIC manipulates the packet dequeueing
sequence of the static NIC scheduler in the OS, approximating hierarchical
packet scheduling.

into child qdisc i where i is the index of assigned Tx queue in
queue_mapping metadata, which is determined by TONIC
stages. TONIC consists of two stages as follows.

Stage 1 (Tenant-Aware Queue Assignment): In the first
stage, TONIC ensures fair bandwidth sharing in tenant level
for intertenant policy enforcement. To avoid interference in the
same Tx queue, TONIC reserves a disjoint set of Tx queues to
each tenant. This ensures fairness among tenants when they
share the bottleneck. However, another challenge is how to
express different tenant weights for WRR using a simple RR
NIC scheduler, which drains the equal bytes-per-round (BpR)
from all nonempty queues every round.

TONIC addresses the above challenge by expressing ten-
ant weights as the number of Tx queues. As Table I shows,
commodity multiqueue NICs provide abundant number of
hardware queues for per-flow fairness. Meanwhile, the num-
ber of tenants per server is much less than the number of
supported queues because a single server runs generally tens
of VMs/containers [15], [16] and a single tenant owns multiple
VMs/containers to run applications. This mismatch provides us
opportunities to express tenant weights indirectly. Specifically,
TONIC assigns Tx queues to packets evenly within the Tx
queue pool reserved for a tenant. In Fig. 5, TxQ {1, 2} and
TxQ 3 are assigned to tenant 1 and tenant 2, respectively. The
NIC scheduler dequeues packets from the queues with equal
BpR, but the tenants share the link capacity with weights of
2:1 since the aggregate BpR of tenant 1 is 2×BpR.

Stage 2 (Priority-Aware Packet Insertion): In the second
stage, TONIC enables traffic prioritization within a single ten-
ant for intratenant policy enforcement. A challenge is how
to prioritize the packets of high priority applications while
preserving a scheduling hierarchy.

Our idea to address the challenge is leveraging the double-
ended queue structure of qdiscs. The current Linux kernel
implements a qdisc as a double-ended queue where we can
enqueue and dequeue packets to/from the head and tail freely.
Therefore, TONIC buffers high priority packets into the head
of qdiscs instead of the tail. Our head buffering makes the high
priority packets jump the buffered low priority packets without
experiencing queueing delay. To preserve a scheduling hierar-
chy, the second stage does not change the Tx queue index,
which is determined in the first stage. The second stage only
determines whether packets will be buffered in the head or
the tail of the queue. In Fig. 5, we can find that high priority
packets with darker color of tenant 1 are buffered in front
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of the other packets in TxQ 1 and TxQ 2, not in TxQ 3 of
tenant 2.

C. Detailed Mechanisms

In the following, we show the detailed design of TONIC. We
consider a dedicated resource sharing model where tenants do
not share assigned CPU cores with the other tenants for strong
performance isolation. We suppose that the operator knows
essential information for network policy enforcement, such as
the number of CPU cores owned by each tenant, weights for
each tenant, and port numbers of applications to be priori-
tized. TONIC initializes the following four arrays with the
information.

1) Tenant Mapping Array: This array enables us to classify
the traffic of different tenants. Specifically, we classify
tenant traffic based on the CPU core index. For exam-
ple, when tenant 1 and tenant 2 have 2 and 4 cores
with a 6-core CPU, the mapping array is expressed as
{1, 1, 2, 2, 2, 2}. We can obtain the tenant ID of a packet
by referring the mapping array and sender_cpu meta-
data in the SKB, which stores the index of CPU core
that processes the packet.

2) Tenant Weight Array and Start Index Array: TONIC
maintains the tenant weight array (e.g., {2, 1} for two
tenants with 2:1 weights). Based on the tenant weights,
TONIC calculates the index range of tenant queues in
ascending order and stores the index of the first queue
in the start index array. Suppose that we have two ten-
ants with weights of 2 and 1. In this case, Tx queue
{0, 1} and Tx queue 2 are assigned to each of the ten-
ants, respectively. The corresponding elements in the
start index array are {0, 2}.

3) Port Number Array: TONIC maintains the port num-
ber array, which stores the port number of applications
specified in intratenant policy to prioritize the traffic of
a preferred application within a tenant.

1) Tenant-Aware Queue Assignment: To approximate
WRR, TONIC expresses tenant weights by leveraging multiple
Tx queues available in commodity NICs. In particular, TONIC
assigns Tx queues to tenant i as much as tenant weight wi. For
example, when there exist two tenants, tenant 1 and tenant 2
with weights of 1 and 2, we assign 1 and 2 Tx queues for each
tenant, respectively. The multiqueue NIC scheduler dequeues
packets from nonempty queues with equal BpR every round
whose unit BpR is an MTU-byte. With TONIC, the aggregate
drained bytes of tenant i in a round can be given by

Bi = qi × BpRc (1)

where qi = wi is the number of assigned Tx queues to tenant i
and BpRc is the unit BpR. In the original WRR, tenant weights
are expressed as different BpRs. Therefore, the drained bytes
of tenant i in a round are

BOrigin
i = BpRi (2)

where BpRi = wi×BpRc. We can find that Bi = BOrigin
i easily.

To ensure the aggregate BpR as much as the weight, TONIC
evenly enqueues packets into the assigned Tx queues by

Algorithm 1 Tx Queue Assignment in TONIC
1: Inputs:
2: i: An integer indicating tenant ID
3: wi: The weight of tenant i
4: s: The index of the first Tx queue assigned to tenant i
5: ci: The current Tx queue index of tenant i
6:
7: i ← TenantMappingArray[skb->sender_cpu]
8: wi ← WeightArray[i]
9: s ← StartIdxArray[i]

10:
11: if ci ≥ wi then � ci exceeds the index range of tenant i
12: ci ← 0 � Initialize the index to circulate Tx queue index based on

the assigned index range for tenant i
13: end if
14: skb->queue_mapping ← s + ci � Assign Tx queue index
15: ci ← ci +1 � Update current index

(a) (b)

Fig. 6. Comparison of TONIC with the original WRR. TONIC results in the
same packet dequeueing sequence with WRR by leveraging multiple queues
with equal BpR. (a) WRR. (b) TONIC.

updating queue_mapping in the SKB for each packet. For
instance, when a tenant has two Tx queues of queue 0 and
queue 1, the assigned Tx queue indices for each packet are
{0, 1, 0, 1, 0, 1, . . .}.

Algorithm 1 describes the pseudocode of Tx queue assign-
ment in TONIC. To derive the index of Tx queue, we need
four input parameters that include tenant ID, tenant weight,
index of the first queue assigned to the tenant, and the index
to track the current Tx queue index (lines 1–5). The required
inputs can be obtained when the arrays are initialized (lines 7
and 8). Note that ci is initialized as 0 at the beginning. To
spread packets to the assigned Tx queues evenly, we initialize
ci again when it exceeds wi (lines 11–13). Recall that TONIC
reserves Tx queues to tenant i as much as weight wi. TONIC
determines the queue index for the current packet by updat-
ing queue_mapping and increases the current index for the
next packet (lines 14 and 15).

Fig. 6 shows an example where two tenants, tenant 1 and
tenant 2, share the 1500-byte MTU link. Fig. 6(a) depicts
the original WRR where weights are expressed as different
BpRs in a single queue. For each round, the NIC scheduler
drains 1500 bytes and 3000 bytes from the queues of ten-
ant 1 and tenant 2, respectively. Fig. 6(b) shows the approach
of TONIC where weights are expressed as multiple queues
with equal BpR. In this approach, the NIC drains 1500 bytes
of equal data from the queues every round. We can find that
draining 1500 bytes from two queues results in the identical
packet dequeueing sequence to the original WRR that drains
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Algorithm 2 Priority Assignment in TONIC
1: Inputs:
2: ps: The source port number in TCP/UDP header
3: pd : The destination port number in TCP/UDP header
4:
5: if ps ∈ PortNumberArray or pd ∈ PortNumberArray then
6: skb->priority ← 1 � Update metadata to indicate that the

packet belongs to the high priority application
7: else
8: skb->priority ← 0 � Tag low priority in metadata for the

other packets
9: end if

Algorithm 3 Enqueueing Decision in the Parent qdisc
1: Inputs:
2: i: An integer indicating Tx queue index
3: j: An integer denoting packet priority
4:
5: i ← skb->queue_mapping � Determined in Algorithm 1
6: j ← skb->priority � Determined in Algorithm 2
7: if j = 1 then � High priority?
8: Enqueue(head,i) � Insert the packet into the head of queue i
9: else

10: Enqueue(tail,i) � Insert the packet into the tail of queue i
11: end if

2× 1500 = 3000 bytes from a single queue. We can also see
that the same bytes are transmitted per round in both WRR
and TONIC.

2) Priority-Aware Packet Insertion: To approximate SPQ
for traffic prioritization between applications in a tenant,
TONIC leverages the double-ended queue structure of the
qdisc. With the double-ended queue, we can enqueue to or
dequeue from either the head or tail of the queue. Our objec-
tive is to make high priority packets be dequeued earlier
than the other buffered packets. To do this, as shown in
Algorithm 2, TONIC sets priority metadata in the SKB to
1 if source/destination port numbers are specified in the port
number array (lines 5 and 6). Otherwise, priority is set to
0 denoting a low priority (lines 7 and 8).

With the socket metadata, the parent qdisc buffers the packet
to the head of the child qdisc if priority is 1. Otherwise,
TONIC enqueues the packet into the tail as usual. Algorithm 3
describes how the parent qdisc performs the packet enqueue-
ing decision. The parent qdisc first gets the Tx queue index
determined in Algorithm 1 by referring queue_mapping
metadata (line 5). The qdisc also obtains the priority value
with priority determined in Algorithm 2 (line 6). TONIC
buffers the packet to the head of the corresponding child qdisc
if the packet has high priority or into the tail of child qdisc
if otherwise (lines 5–8). Since the children qdiscs and Tx
queues are synchronized, the NIC observes the identical packet
enqueueing sequence with the qdisc.

Fig. 7 compares the original SPQ with TONIC to show how
TONIC enforces traffic prioritization between two applications
in a single tenant with three Tx queues. Unlike SPQ where
high priority packets are dequeued first using the concept of
priority, TONIC schedules the high priority packets indirectly
by the RR packet scheduler. Nevertheless, we can see that
TONIC results in the same packet dequeueing sequence with
SPQ without priority scheduling.

(a) (b)

Fig. 7. Comparison of TONIC with the original SPQ. To express SPQ
without the concept of priority, TONIC buffers high priority packets in the
head of queue. (a) SPQ. (b) TONIC.

Fig. 8. Preservation of a policy hierarchy. TONIC naturally maintains the
policy hierarchy because the traffic prioritization of a tenant does not affect
the weighted fair sharing between the tenants.

3) Put Everything Together: We now explain how TONIC
preserves policy hierarchies. Our queue assignment mecha-
nism in the first stage strictly isolates hardware queues among
different tenants, and this is the key for intertenant policy
enforcement. If the second stage breaks queue isolation for
traffic prioritization, the policy hierarchy may be violated.
However, in the second stage, TONIC never changes the index
of Tx queues to be buffered but only determines the direction
of buffering. Therefore, the policy hierarchy can be maintained
naturally.

Fig. 8 depicts an example that shows that our approach
preserves a policy hierarchy. We consider tenant 1 and ten-
ant 2 with different weights of 3:2. We suppose that tenant
2 runs two applications with different priorities. In the fig-
ure, packets with darker color are high priority packets. To
dequeue all the packets of the tenants, the NIC scheduler
requires two scheduling rounds. We can see that although the
scheduler dequeues the packets with RR scheduling, the packet
dequeueing sequence is approximate to the result of hierar-
chical packet scheduling using WRR, SPQ, and FIFO. The
enqueueing sequence for each queue is regardless of the num-
ber of tenants since we assign a set of dedicated queues for
each tenant.

D. Discussion

We now discuss several design issues and a few limitations
of TONIC.

Virtualized Environments: We have implicitly consid-
ered containerized environments where qdiscs and hardware
queues are not virtualized. However, the hypervisor-based
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virtualization is still widely deployed. In the virtualized
environment, the guest OS in VMs sees virtualized NICs
(vNICs). To use TONIC, we should transform the queue index
of the vNIC determined in VMs into the queue index of the
physical NIC. This translation mechanism can be implemented
as a reference table in the hypervisor, who bridges the VMs
and physical servers as a shim layer. Since all the packets of
VMs go through the physical server, we do not need to modify
TONIC itself.

Rate Limiters: While this article focuses on work-
conserving schedulers for high link utilization, there exist
nonwork conserving packet schedulers such as token bucket
to express rate limiting and packet pacing [7], [30]. TONIC
does not limit the functionality of rate limiting, which means
that rate limiters can be configured in the qdiscs or NICs.
Commodity multiqueue NICs cannot enforce tenant-level rate
limiting even with per-queue limiters due to uneven traffic dis-
tribution across Tx queues [8]. However, TONIC can enforce
tenant-level rate-limiting with per-queue rate limiters because
TONIC spreads packets evenly across Tx queues regardless
of the CPU core processed the packets. It is also possible to
combine per-queue rate limiters and TONIC to let a tenant
utilize idle bandwidth without exceeding the maximum rate.

Efficiency in Overcrowded Servers: TONIC may not be
effective for extreme cases. For example, one might consider
128 tenants in a single server with an Intel 82599 NIC, which
supports 128 hardware queues. In this case, it is hard to pre-
serve weighted fair sharing between the tenants because a
128-queue NIC is not enough to represent the diverse weights
of the tenants. This also can be a problem if we consider a mul-
titenancy model where multiple tenants share the same CPU
core without performance isolation. However, we believe that
such an overcrowded server is rare in practice. In addition, the
number of tenants per server depends on the tenant placement
policy. Therefore, the operator can modify the tenant place-
ment policy to avoid the lack of queues when TONIC should
be deployed.

Limited Expressiveness: Compared to hardware solutions,
TONIC has limited expressiveness. For instance, our work
does not support complex schedulers (e.g., least slack-time
first (LSTF) [31] and service-curve earliest deadline first
(SC-EDF) [32]). In addition, TONIC supports only two pri-
orities between applications in a tenant. It is also complicated
to use weighted fair sharing within a tenant because the num-
ber of queues can be partitioned is limited to the number
of assigned queues for the tenant. It may not be possible to
use weights consisting of prime numbers, which require many
hardware queues. However, we believe FIFO, WRR, and SPQ
can satisfy the majority of network policy because most hier-
archical policies generally consist of fair sharing and traffic
prioritization. Basically, TONIC sacrifices expressiveness at
the expense of supporting existing commodity NICs. This is
the distinguished contribution from new NIC hardware designs
that easily eliminate the root cause of the problem by replacing
hardware.

Packet Reordering: The head buffering for traffic priori-
tization may cause packet reordering by the last-in–first-out
(LIFO)-like behavior, which may harm latency for flows

consisting of many packets. However, latency-sensitive appli-
cations such as KVS have small flow sizes less than 1 kB [3],
[5], [6]. Measurement studies for production workloads report
that 90% of flows are less than 10 kB [19] and 75% of
the flows consist of a single packet [21], [22]. In addition,
since the buffered packet is dequeued almost instantly, no seri-
ous performance degradation occurs. We demonstrate this in
Section V through testbed experiments. An alternative way
to avoid packet reordering is using priority scheduling in the
qdisc layer, but this may increase packet processing delay
slightly.

IV. IMPLEMENTATION

In this section, we present the implementation of a TONIC
prototype and discuss userspace implementation. We also
analyze the processing overhead of TONIC.

Prototype Implementation: A TONIC prototype is imple-
mented as a NETFILTER module in Linux kernel 4.4. The
module is located as a shim layer between the TCP/IP stack
and the qdisc layer. Every outgoing packet is intercepted by
NETFILTER hook at INET_POST_ROUTING and TONIC
updates queue_mapping and priority in the SKB data
structure if the conditions of Algorithms 1 and 2 are met.
The queue mapping information and tenant weights can be
configured using sysctl without recompiling the module.

Our current implementation requires a few lines of codes in
the Linux kernel. First, we disable Tx queue assignment oper-
ations in netdev_pick_tx() because the current kernel
implements queue assignment mechanisms as built-in func-
tions, not modules. Therefore, unless disabling the operations,
the kernel eventually overwrites queue_mapping metadata,
which is determined by TONIC. Second, we make the kernel
store the value of smp_processor_id(), the CPU core
index, to sender_cpu in the SKB when the OS begins
packet processing. Finally, we modify the multiq qdisc mod-
ule to enqueue the packet in the head when priority is 1.

Userspace Implementation: TONIC can be implemented
in userspace network stacks [33]–[35], which provide higher
packet processing performance compared to the OS network
stack. To support userspace networking, we should implement
TONIC as a userspace module since our current design tar-
gets the OS network stack with the SKB metadata and qdiscs.
Implementing TONIC in userspace is not problematic because
we only need the metadata to determine the queue index and
the direction of enqueueing, which means that the metadata is
not delivered to the NIC driver. The SKB metadata, such as
queue_mapping and priority, can be replaced as meta-
data in userspace network stacks easily. The qdisc also can be
implemented as software queues in userspace.

Processing Overhead: We now analyze the processing over-
head of TONIC to demonstrate the scalability of TONIC.
Specifically, TONIC can support line-rate operations with
emerging high-speed NICs (e.g., 200 GbE) for the follow-
ing reasons. First, there exist no added processing delays in
the NIC caused by extra enqueue/dequeue operations since
TONIC does not modify NIC hardware. Second, TONIC
does not increase enqueue/dequeue operations in the network
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stack as well. TONIC only updates the socket metadata
queue_mapping and priority, which requires negligible
processing delay. Third, to determine the value of metadata,
TONIC does not use loop operations, which can result in
unpredictable processing delay. This also implies that TONIC
can work with many tenants since TONIC has only a little
processing overhead.

V. PERFORMANCE EVALUATION

In this section, we evaluate TONIC through testbed exper-
iments. The questions and key results are as follows.

1) Can TONIC ensure equal fair sharing regardless of the
different number of flows?

2) Can TONIC preserve weighted fair sharing with multiple
tenants?

3) How robust is TONIC to different configurations?
4) Can TONIC enforce traffic prioritization while

preserving a policy hierarchy?

A. Experimental Setup

Testbed: To evaluate TONIC, we build a testbed consisting
of two servers connected to a switch. Each server is with Intel
Core i5-8400 6-core 2.8-GHz CPU, 16 GB of memory, and
Intel 82599 X520-DA2 10GbE NIC. We have enabled TSO
and large receive offload (LRO) to reduce CPU overhead so
that a single core can drive the line rate of 10 Gb/s. Tenants in
our experiments are managed through Linux containers (LXC).
Therefore, each tenant is isolated by Linux cgroups and owns a
number of isolated CPU cores. The applications of the tenants
are computed across their assigned cores. We synchronize IRQ
affinity with CPU affinity to avoid the resource contention
caused by overlapped IRQs among tenants.

Compared Scheme: We compare TONIC against XPS [10],
the default queue assignment mechanism in Linux kernel. The
Linux kernel also supports the per-flow hash scheme. However,
we omit the results of the scheme since the results are very
similar to those of XPS. This is because both XPS and the
per-flow hash scheme do not isolate Tx queues completely.
Specifically, active flows are not uniformly distributed across
the cores in XPS. With the per-flow hash scheme, the flows
of different tenants are contended in the same Tx queue.

Performance Metrics: We use the following performance
metrics.

1) Aggregate Throughput: Our throughput denotes the
aggregate throughput in tenant level to show the band-
width share of each tenant.

2) Fairness Index: We use Jain’s fairness index [36], which
is widely used to evaluate fairness when the bandwidth
should be shared with equal weight.

3) Relative Error Ratio: To evaluate weighted fair shar-
ing, we use relative error ratio that shows the difference
between the actual bandwidth share and the ideal band-
width share in percentage. The relative error ratio of
tenant i is defined as

Relative errori = |B
i
actual − Bi

ideal|
Bi

ideal

(3)

(a) (b)

Fig. 9. Time series of fairness index in equal fair sharing. TONIC provides
nearly perfect fairness even with a high asymmetry ratio over time. (a) XPS.
(b) TONIC.

where Bi
ideal =

∑
Bactual · (wi/

∑
w) and (wi/

∑
w) is

the normalized weight of tenant i.
4) Query Completion Time: To evaluate the impact of

TONIC on the performance of memcached, we use
the query completion time (QCT), which denotes the
required time to request a query and receive a response.

B. Equal Fair Sharing

Methodology: We first inspect whether TONIC can share
bandwidth equally regardless of a different number of flows
per tenant. In this experiment, we have two tenants T1 and T2
with equal weight. Each tenant owns 3 CPU cores and 3 Tx
queues. The tenants generate traffic for 15 s using iperf [28],
a multithreaded network-intensive application. In our scenario,
T1 has always eight flows. However, for T2, we vary the
number of flows to {8, 16, 32, 64}. Therefore, we have the
asymmetry ratios of 1:1 to 1:8 in the number of flows. We
measure the aggregate throughput of each tenant every 0.5 s.

Results: Our results demonstrate that TONIC can provide
fair bandwidth sharing. Fig. 9 shows the time series of Jain’s
fairness index between the throughput of the two tenants.
We find that TONIC isolates the two tenants regardless of
asymmetry ratios. With TONIC, although the fairness index
fluctuates over time and the average fairness index decreases
as the asymmetry ratio increases, the lowest index is only
0.996 when T2 has 64 flows. However, XPS does not provide
enough fairness. When the asymmetry ratio is 1:8, the lowest
fairness index is 0.630 and the average fairness index is only
0.665. Even when the tenants have an equal number of flows,
XPS only provides 0.978 of the fairness index while that of
TONIC is always 1.000.

Fig. 10 compares the average throughput between the ten-
ants. It is easy to see that XPS results in unfair bandwidth
sharing as the asymmetry ratio increases while TONIC gen-
erally shares bandwidth equally between the tenants. One
notable point is that XPS does not share bandwidth equally
even when the asymmetry ratio is 1:1. This is because active
flows of applications are not distributed across the CPU cores
of a tenant uniformly, and this lead to uneven packet dis-
tribution across the hardware queues. Unlike XPS, TONIC
determines the queue index regardless of the CPU cores.
Therefore, this results in fair packet distribution across the
queues, causing no issues like in XPS.

C. Weighted Fair Sharing

Methodology: We conduct experiments with three tenants
to inspect whether TONIC can preserve weighted fair sharing
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(a) (b)

Fig. 10. Average throughput of tenants with different number of flow ratios.
XPS results in unfair bandwidth sharing even with the asymmetry ratio of
1:1 due to uneven traffic distribution across queues. Unlike (a) XPS and (b)
TONIC shares bandwidth almost equally by distributing traffic evenly.

TABLE II
USED TENANT CONFIGURATIONS

(a) (b)

Fig. 11. Time series of the aggregate throughput of three tenants with weights
of 1:2:3. XPS cannot enforce weighted fair sharing because a tenant with more
flows occupies more bandwidth. Unlike (a) XPS and (b) TONIC respects the
assigned weights regardless of different number of flows.

among tenants with different weights. Like in the previous
experiment, we use iperf to generate traffic. To under-
stand the impact of tenant configurations comprehensively,
we use two different settings described in Table II. While
case 1 assigns the same number of cores and weights, case 2
assigns a mismatched number of cores and weights. Ideally,
TONIC should partition bandwidth using only tenant weights
and should not be influenced by other conditions, such as the
number of CPU cores and flows. In case 1, T1 first starts
eight flows for 15 s. At 5 s, T2 generates 16 flows for 10 s.
Finally, at 10 s, T3 generates 32 flows for 5 s. We measure
the aggregate throughput of each tenant every 0.5 s.

Results: Fig. 11 shows the results for case 1. We observe that
TONIC can share bandwidth in a weighted fair manner while
XPS allows a tenant with many flows to occupy more band-
width. For example, T3 in XPS occupies excessive bandwidth
because of the large number of flows. Meanwhile, except the
first 5 s, T1 in XPS cannot enjoy enough throughput due to
the other tenants. To examine the bandwidth share between the
tenants in detail, we calculate the relative error ratios of the
tenants. Fig. 12 reports the time series of relative error ratios.
We can find that compared to XPS, the error ratio of TONIC

(a) (b)

Fig. 12. Time series of the relative error ratio of three tenants with weights
of 1:2:3. TONIC causes lower error ratios than XPS because it can enforce
weighted fair sharing by assigning different number of Tx queues to each of
tenants. (a) XPS. (b) TONIC.

(a) (b)

Fig. 13. Time series of the aggregate (a) throughput and relative (b) error
ratio when weights and the number of CPU cores are different in case 2. This
suggests that TONIC can enforce weighted fair sharing among tenants well
without regard to tenant configurations.

is much lower. For example, when all the tenants are active for
the last 5 s, XPS violates tenant weights significantly whereas
TONIC achieves weighted fairness. Overall, the error ratios of
TONIC are within 0.02%−5.65% whereas those of XPS are
within 5.41%–72.96%.

For case 2, all the tenants start the corresponding number
of flows in Table II at the same time and last transmission for
10 s. Fig. 13 shows the time series of throughput and relative
error ratio of TONIC. We omit the results of XPS because the
measured throughput of case 2 is very similar to the result of
case 1. In Fig. 13(a), we find that TONIC achieves weighted
fair sharing regardless of the tenant configuration. We also
observe that TONIC maintains line-rate throughput. The error
ratios shown in Fig. 13(a) are similar to those in Fig. 12(b) that
the ranges are within 0.03%−6.27% and its average is 3.2%.

D. Traffic Prioritization With Hierarchical Policies

We conduct a series of experiments to demonstrate that
TONIC can prioritize the traffic of high priority applica-
tions within a tenant without harming the policy hierarchy.
We consider two tenants, T1 and T2. The tenants have 3
CPU cores and the equal weight of 3. T1 runs a throughput-
sensitive application only. T2 runs two applications where
one is latency sensitive and the other is throughput sensi-
tive. The two tenants should share bandwidth equally and
the latency-sensitive application should be prioritized over the
throughput-sensitive application of T2. We use iperf for
throughput-sensitive applications. For latency-sensitive appli-
cations, we use two different applications: 1) sockperf [37]
and 2) memcached [14]. sockperf [37] is a network
benchmarking tool that can measure latency in fine granularity.
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Fig. 14. CDF of measured latency using sockperf for T2.

Fig. 15. Time series of Jain’s fairness index between the two tenants.

Memcached is a widely used KVS for modern online
services, such as Web search and video streaming [6].

Methodology and Results With Sockperf: We first use
sockperf as the latency-sensitive application of T2. In this
experiment, we measure the end-to-end latency for 10 s with
sockperf. sockperf continuously sends next messages
when the response of the current messages is received. Overall,
8816 and 3269 messages are generated for TONIC and XPS
during 10 s, respectively. The difference in number of mes-
sages is due to the difference of per-message latency. For
throughput-sensitive applications, the two tenants start eight
iperf flows at the beginning to saturate the link capacity. We
measure the aggregate throughput of each tenant and calculate
Jain’s fairness index between the tenants every 0.5 s.

Figs. 14 and 15 suggest that TONIC can enforce hier-
archical network policies without hardware modifications.
Fig. 14 shows the latency results with sockperf. We can
clearly observe that TONIC shows a lower latency than XPS.
Compared to XPS, TONIC speeds up the average latency
by 2.94×. For the 99th percentile latency, TONIC beats
XPS by 2.24×. This is because TONIC makes the pack-
ets of sockperf pass over the buffered packets of iperf.
Meanwhile, XPS cannot prioritize sockperf traffic due to
the static RR scheduler in the NIC, resulting in poor latency.
Fig. 15 shows the time series of Jain’s fairness index between
T1 and T2 over time. We can see that TONIC maintains Jain’s
fairness index close to 1 across time. Unlike TONIC, XPS pro-
vides imperfect intertenant isolation, which stems from that
XPS does not distribute traffic across queues uniformly.

Methodology and Results With Memcached: We now use
memcached [14] for the latency-sensitive application of T2.

Fig. 16. CDF of the QCT in memcached with 1-kB items.

Fig. 17. CDF of the QCT in memcached with 16-kB items.

Since the services are user-facing, the QCT is crucial to user
experience. We prepopulate a server instance by varying the
item sizes using PUT operation. We use 1 kB and 16 kB
items. The 1 kB item represents a typical item value size in
KVS [3], [5], [6]. The 16 kB item is to examine the impact of
item size on the performance. The client sends a GET query to
the server and the server responses with the item matched with
the requested key. We generate 1 K queries and measure the
QCT for each of the queries. Like the sockperf experiment,
we let each tenant generate 8 iperf flows at the beginning
for throughput-sensitive applications. In these experiments, we
omit the throughput fairness results because they are very
similar to the results of the sockperf experiment.

Fig. 16 compares XPS and TONIC in the QCT. We find
that TONIC generally outperforms XPS. TONIC is better than
XPS in the average QCT by 1.37×. However, TONIC under-
performs XPS for the 10th percentile QCT. We suspect that
this is the impact of delay caused by packet reordering. For
the 99th percentile tail QCT, which is the most important for
user experience, TONIC is worse than XPS by 0.99×. The
reason why TONIC does not beat XPS in the tail QCT is that
the retransmission delay due to packet reordering increases
the overall QCT although head buffering reduces the queue-
ing delay. The above results suggest that TONIC can provide
better performance for KVS through traffic prioritization while
preserving policy hierarchies.

For deep dive, we inspect the impact of item size on the
performance. Note that 90% of flows in modern workloads
are smaller than 10 kB [19]. Fig. 17 shows results with 16 kB
items. It is easy to see that TONIC outperforms XPS. By
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comparing this result with the 1-kB result, we can know that
larger items bring more performance gains to TONIC. For
example, we observe that TONIC significantly outperforms
XPS for the 10th percentile QCT. For 99th percentile QCT,
TONIC achieves better performance than XPS by 1.40×. We
suspect that this is because 16-kB flows are less sensitive to
the queueing delay and packet loss than 1-kB flows.

VI. RELATED WORK

Programmable Scheduling: PIFO [11] is a programmable
scheduling model that can express various packet scheduling
algorithms using rank-based enqueueing. Owing to its rich
expressiveness, there exist several works that employ PIFO
for packet scheduling. Loom [8] is a NIC hardware design
that uses multiple PIFO blocks to express policy hierarchies.
Eiffel [38] is a software packet scheduling mechanism that
also adopts PIFO. Unfortunately, PIFO has a limited capac-
ity that provides only 2K flows at line rate due to increased
packet processing overhead [11], [12]. Motivated by the lim-
itation of the PIFO model, push-in-extract-out (PIEO) [12]
scales PIFO to 30K flows by dequeueing packets from arbi-
trary positions in packet queues. Similar to PIFO, PIEO can
express hierarchical scheduling using multiple PIEO schedul-
ing blocks. However, this also degrades the scalability of PIEO
by increasing scheduling overhead. Unlike the above schedul-
ing models, TONIC does not degrade scalability since our
solution space is limited to the existing packet processing lay-
ers in the network stack. In addition, while the models require
hardware modifications and long deployment time, TONIC can
approximate hierarchical scheduling with existing commodity
multiqueue NICs.

Meanwhile, motivated by that PIFO requires new hardware,
SP-PIFO [39] approximates PIFO on existing programmable
hardware at line rate by rotating queue priorities dynami-
cally. However, it inherits the drawbacks of PIFO including
insufficient scalability. In addition, since SP-PIFO basically
targets programmable switches of a specific switch ASIC ven-
dor and a specific programming language [40], it is unclear
whether SP-PIFO can be implemented on programmable NICs
at line rate, which have different hardware architectures and
less resources compared to the switch.

Per-Flow NIC Scheduling: There exist NIC scheduling solu-
tions that aim at ensuring per-flow fairness. Unlike TONIC,
these works do not support multitenancy and cannot enforce
hierarchical network policies. SENIC [7] is a NIC design that
provides tens of thousands of hardware queues for scalable
per-flow rate limiting. Titan [9] provides per-flow fairness with
by assigning flows to hardware queues fairer than the per-
flow hash scheme. Titan shows that we can configure queue
weights by modifying NIC drivers. Specifically, it tracks the
number of flows per queue as queue weights. However, it
is limited to a specific NIC model. In addition, as a side
effect, it limits the available number of Rx queues to only four
queues. This increases packet loss rate and degrades through-
put because of the limited number of queues. It also harms the
performance of receive side scaling (RSS), which has signifi-
cant impacts on application performance [41]. Furthermore,

direct weight exposure jeopardizes packet latency because
weight update causes a PCIe write, which can take up to hun-
dreds of microseconds. During this time, it is unavailable to
transmit and receive packets. TONIC leverages multiple hard-
ware queues to express tenant weights, and this is possible
with commodity NICs without performance degradation.

Multiqueue SSD Scheduling: Multiqueue support is not a
trend limited to NICs. Recent NVMe SSDs also support mul-
tiqueues for parallel storage I/O processing. Motivated by this
trend, there exist several works that address multiqueue SDDs.
FLIN [42] solves unfairness among concurrently executing
applications by designing an interference-aware I/O request
scheduler. MQFQ [43] also solves the unfairness problem in
multiqueue SSDs by designing a fair scheduler. Compared to
FLIN, MQFQ is more generic solution for various multiqueue
I/O devices including multiqueue NICs. However, MQFQ can-
not enforce hierarchical network policies and is unaware to
multitenancy.

VII. CONCLUSION

This work addressed multiqueue NICs in multitenant data
centers, which are the key infrastructure in the IoT system
architecture. While multiqueue support is essential to drive
line rates of modern NICs, commodity multiqueue NICs
cannot enforce hierarchical network policies. Accordingly,
we presented TONIC, a multiqueue NIC packet scheduling
solution that can enforce hierarchical network policies with
existing commodity multiqueue NICs by approximating hier-
archical packet scheduling. TONIC reserves a number of
hardware queues for each tenant to express tenant weights
indirectly, and enqueues packets into the head of qdisc to prior-
itize latency-sensitive traffic within a tenant without violating
hierarchies. We implemented a TONIC prototype and evalu-
ated the performance on a testbed. The experimental results
showed that TONIC can enforce hierarchical network policies
consisting of weighted fair sharing and traffic prioritization
with robustness to various conditions.
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Load and state-aware receive side scaling,” in Proc. ACM CoNEXT ,
New York, NY, USA, 2019, pp. 318–333.

[42] A. Tavakkol et al., “Flin: Enabling fairness and enhancing performance
in modern NVME solid state drives,” in Proc. ISCA, Jun. 2018,
pp. 397–410.

[43] M. Hedayati, K. Shen, M. L. Scott, and M. Marty, “Multi-queue fair
queuing,” in Proc. USENIX ATC, 2019, pp. 301–314.

Gyuyeong Kim (Member, IEEE) received the B.S.
and Ph.D. degrees in computer science from Korea
University, Seoul, South Korea, in 2012 and 2020,
respectively.

He is currently a Research Professor with the
Future Network Center, Korea University. His
research interests include networked systems, cloud
computing systems, and programmable hardware.

Wonjun Lee (Fellow, IEEE) received the B.S.
and M.S. degrees in computer engineering from
Seoul National University, Seoul, South Korea, in
1989 and 1991, respectively, the M.S. degree in
computer science from the University of Maryland,
College Park, MD, USA, in 1996, and the Ph.D.
degree in computer science and engineering from the
University of Minnesota, Minneapolis, MN, USA, in
1999.

In 2002, he joined the Faculty of Korea University,
Seoul, where he is currently a Professor with the

School of Cybersecurity. He has authored or coauthored over 220 papers in
refereed international journals and conferences. His research interests include
communication and network protocols, optimization techniques in wireless
communication and networking, security and privacy in mobile computing,
and RF-powered computing and networking.

Prof. Lee has served on the TPC and/or Organizing Committee Member
of IEEE INFOCOM from 2008 to 2021, a PC Vice Chair of IEEE ICDCS
2019, and the ACM MobiHoc from 2008 to 2009, and over 130 international
conferences.

Authorized licensed use limited to: Korea University. Downloaded on April 07,2022 at 04:24:49 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


