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Abstract

We present OrbitCache, a new in-network caching architec-

ture that can cache variable-length items to balance a wide

range of key-value workloads. Unlike existing works, Orbit-

Cache does not cache hot items in the switch memory. In-

stead, we make hot items revisit the switch data plane con-

tinuously by exploiting packet recirculation. Our approach

keeps cached key-value pairs in the switch data plane while

freeing them from item size limitations caused by hardware

constraints. We implement an OrbitCache prototype on an

Intel Tofino switch. Our experimental results show that Or-

bitCache can balance highly skewed workloads and is robust

to various system conditions.

1 Introduction

Key-value stores are the fundamental building blocks for on-

line services owing to fast access to variable-length data [2,

5, 16, 30]. Workloads are generally read-intensive, and most

items are hundreds of bytes [7, 8, 12]. A challenge in scal-

ing key-value stores is mitigating load imbalance among stor-

age servers caused by skewed key popularity (e.g., trending

events). The load imbalance leads to overloading hot item

servers, causing overall performance degradation [21,27,29].

In-network caching is a promising load-balancing ap-

proach that builds a cache in the switch by leveraging pro-

grammable switch ASICs like Intel Tofino [3]. The idea is

to store hot items in the on-chip switch memory. Requests

read the item value by referring to the cache lookup table

where the item key is the table index. Compared to server-

based caching, in-network caching provides much higher per-

formance without extra cache nodes or accelerators thanks to

a Tbps-scale processing throughput.

Unfortunately, existing solutions [21, 32, 34] can cache

only tiny items due to hardware constraints. Specifically, the

key size is limited to 16 bytes due to the maximum match-

key width of the match-action table. A limited number of

match-action stages and a small accessible byte size per stage

make it difficult for the value size to exceed 128 bytes. These

numbers are far from typical workloads where key and value

sizes are still small enough to be stored in a single packet, but

larger than the limit [7,8,12,33,37]. For example, in 54 Twit-

ter workloads [37], most keys are tens of bytes, and many val-

ues are less than 1024 bytes. However, the existing solutions

cannot cache even a single item in 42 out of 54 workloads

because the keys and values are generally larger than the lim-

its. Between the other 12 workloads, only 2 workloads have

a portion of cacheable items larger than 50%. This trend is

similar in Facebook workloads as well [12]. In this context,

we ask the following question: how can we cache variable-

length items in the programmable switch for balancing typi-

cal key-value workloads?

We present OrbitCache, a new in-network caching archi-

tecture that can cache variable-length key-value items in the

switch data plane. Our idea is to make hot items visit the

switch data plane continuously in the form of cache packets

instead of caching the hot items in the switch memory. We

efficiently use packet recirculation, a built-in feature of the

programmable switch ASIC. This enables a packet to revisit

the switch data plane through an internal loopback port with-

out going outside. The switch can cache variable-length key-

value pairs without being limited by the hardware constraints

owing to circulating cache packets. For cache serving, the

switch maintains small request metadata in the switch mem-

ory and forwards the cache packet to the client if there is a

pending request for the key. To support variable-length keys,

we use key hashes for cache lookups and resolve hash col-

lisions at the client by comparing the requested key and the

returned key, which is contained in the cache packet.

The key insight behind the idea is that it is hard to over-

come the memory access constraint of switch hardware if we

stick to the approach of caching items in the switch memory.

For example, the idea of using key hashes for variable-length

keys is difficult to realize in the existing solutions. This is be-

cause the switch does not have enough hardware resources to

store keys and values together. In OrbitCache, cache packets

contain both keys and values, allowing to handle hash colli-



sions at the client. Meanwhile, we may recirculate requests

multiple times to read larger values. However, this limits scal-

ability because the number of in-flight packets in the recir-

culation port increases proportionately to the number of re-

quests, making a bottleneck. In addition, the switch has one

internal recirculation port. OrbitCache avoids a bottleneck in

the recirculation port. This is because 1) requests are never

recirculated; 2) the number of in-flight cache packets is small

and constant; 3) the switch can process multiple cache pack-

ets simultaneously with hardware-level parallelism, thus min-

imizing queueing between cache packets.

Realizing the idea imposes various technical challenges.

First, the switch should buffer multiple request metadata for

cached items. We design a request table as a circular queue

structure using multiple register arrays. Our request table pro-

vides isolated data access among different keys. Second, a

cache packet should serve multiple requests once fetched,

rather than a single request. To achieve this, the switch clones

the cache packet with low overhead before forwarding it to

the client using the packet replication engine (PRE), a special

module of the switch ASIC. Next, we should ensure cache co-

herence. We design an invalidation-based coherence protocol

that can fetch new values and send back a reply to the client

simultaneously. Lastly, the switch should deal with dynamic

workloads where key popularity changes over time. We de-

sign an efficient cache update mechanism in the switch con-

trol plane.

We have implemented a OrbitCache prototype on an In-

tel Tofino switch. To evaluate OrbitCache, we build a testbed

consisting of commodity servers. Our experimental results

show that OrbitCache provides load balancing for many

skewed workloads having diverse item sizes. In addition, Or-

bitCache is robust to various workload conditions like key

access distributions, write ratios, and the number of servers.

We also show that OrbitCache can adapt to dynamic work-

loads where key popularity changes over time.

In summary, this work makes the following contributions.

• We design OrbitCache, an in-network caching architec-

ture where the switch can cache variable-length hot

items to balance a wide range of workloads for dis-

tributed key-value stores.

• We propose several techniques to address technical chal-

lenges when realizing the idea of variable-length in-

network caching.

• We implement a OrbitCache prototype on Intel Tofino

switches and show the efficiency and robustness of Or-

bitCache through extensive testbed experiments.

2 Background and Motivation

2.1 In-Network Load-Balancing Caches

Balancing key-value stores with a small cache. In dis-

tributed key-value stores, balancing imbalanced loads across

storage servers caused by different key popularity is a pri-

mary challenge. Caching is a powerful technique to address

the challenge, which is based on a theoretical result called the

small cache effect: we can balance loads for N servers (or par-

titions) by caching the O(N logN) hottest items, regardless of

the number of items [15]. Caching on commodity servers is

a natural option to build the cache [15, 16, 29]. However, the

performance of a cache node is not sufficient to handle many

requests due to the limited throughput of CPUs. Building

a high-performance caching layer using multiple replicated

cache nodes is expensive and causes poor write performance

for cache coherence.

Why in-network caching? Building a load-balancing

cache in the switch by leveraging programmable switch

ASICs like Intel Tofino [3] is an attractive approach. Un-

like server-based caching, this approach can provide high-

performance load balancing in a single box without addi-

tional nodes. This is because the switch is highly optimized

for packet I/O and can process a few billion packets per sec-

ond, which is an order of magnitude higher than that of the

CPU in servers. The switch also provides a low packet pro-

cessing delay within hundreds of nanoseconds.

Limited cacheable item size. Existing works [21, 32, 34]

demonstrate the efficiency of in-network caching, but they

limit the cacheable item size. Specifically, they support items

of up to 16-byte keys and 128-byte values. In the reconfig-

urable match table (RMT) switch architecture [10] like In-

tel Tofino, the switch data plane consists of n match-action

stages [3]. Each stage has a static memory and a few ALUs

that can perform simple arithmetic operations on k bytes. The

existing works store the value of cached items across multi-

ple stages after fragmentation, limiting the maximum value

size to n×k bytes. Unfortunately, n×k of the current switch

is quite small, and the available number of stages for access-

ing the value is less than n since other non-caching functions

also consume match-action stages. The key size is also lim-

ited by the maximum match-key width of the match-action

table in a single match-action stage. This is because the ex-

isting works use a match-action table to implement the cache

lookup table where the item key is the match key.

Why is it not enough? Many key-value items are indeed

small, but typically exceed the existing size limits. We have

analyzed 54 Twitter workloads [37], and observe that exist-

ing solutions are insufficient to handle typical workloads. For

example, only 3.7% of the workloads have over 80% of keys

≤ 16 B. 38.9% of the workloads have over 80% of values

≤ 128 B. The existing works can cache less than 10% of

items for 85% of the workloads because, to be cacheable,

both key and value sizes must be within the limits. Further-

more, they cannot cache even a single item for 77.8% of the

workloads. Facebook workloads [12] show similar size distri-

butions. The average key size is 27.1 bytes, and the median

value size is 235 bytes. These numbers exceed the size limits

of the existing solutions.
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(a) The NetCache architecutre [21]
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(b) The proposed OrbitCache architecture

Figure 1: Comparison of the high-level idea with the NetCache architecture. In NetCache, requests read fragmented values

stored in the memory across stages. In OrbitCache, clients submit requests, and then circulating cache packets read request

metadata. Since both keys and values are in cache packets, hardware constraints do not limit the item size.

2.2 Variable-Length In-Network Caching

Design rationale. We argue that it is hard to overcome the

memory access constraint if we stick to the approach of

caching data in the switch memory because the constraint

is determined at the time of manufacture. Therefore, we pro-

pose OrbitCache, a different approach to in-network caching.

Our high-level idea is to keep cached key-value pairs cir-

culating within the switch data plane through packet recircu-

lation, a built-in feature of the switch that makes the packet

revisit the switch data plane. In our approach, cached items

read requests rather than the requests read the cached items.

Specifically, clients submit requests, and the switch main-

tains small metadata like the client IP address. Cache packets,

which are reply packets containing the key and the value of

cached items, continue to revisit the data plane via a recir-

culation port while actively checking pending requests. Note

that cache packets do not go outside the switch. If a request

for the key is found, the matched cache packet is forwarded to

the client. Otherwise, the cache packet is recirculated. In Fig-

ure 1, we illustrate the difference between OrbitCache and

the NetCache architecture [21], which is the reference archi-

tecture of existing in-network caching solutions [21, 32, 34].

Variable-length keys. Our approach enables us to support

variable-length key-value pairs. For variable-length keys, one

possible solution within the limited match-key width of the

match-action table is to use a fixed-size key hash as the match

key. To handle potential hash collisions, we should compare

the requested key and the key of the value that has been read.

To do this, the switch data plane should also store the item

keys alongside values. Unfortunately, it is hard to realize in

the existing architecture because there are not enough match-

action stages to store both keys and values. OrbitCache can

realize the idea of using key hashes since the switch main-

tains cached key-value pairs in the form of circulating reply

packets. Therefore, the client can get the correct value from

the storage server if the requested and returned keys differ.

Variable-length values. For variable-length values, a pos-

sible approach in the existing architecture is recirculating re-

quests. Specifically, requests can access the switch memory

multiple times using packet recirculation. However, this ap-

proach is not scalable because the number of in-flight packets

per second in the recirculation port increases in proportion

to the number of requests. For example, if every request is

recirculated 7 times to read a 1024-byte value, the effective

throughput of the recirculation port is reduced to 1/8 of the

bandwidth. Unfortunately, a pipeline in the programmable

switch has only one internal recirculation port, while there

are tens of regular front ports. This means that the recircula-

tion port limits the performance excessively.

Our recirculation-based caching design avoids the bottle-

neck in the recirculation port as follows. First, the switch

never recirculates requests. Second, only a small, constant

number of cache packets are recirculated. The time to recircu-

late and process a cache packet is a few hundred nanoseconds

like normal packets. Therefore, the queueing delay in the re-

circulation port rarely increases as the request rate grows.

Trade-off. There is a trade-off of using recirculation to

achieve variable-length caching. Although we are free from

size limitations, we should limit the cache size. This is be-

cause, in OrbitCache, requests should wait until cache pack-

ets handle them. For a cache packet, the time to read a request

is impacted by the other in-flight cache packets. This means

that the number of in-flight cache packets in the recircula-

tion port determines the latency for cache serving. Although

the switch can process many cache packets simultaneously,

the request may wait excessively until being served if there

are too many cache packets. The sacrifice of cache size for

variable-length caching is backed by the small cache effect.

As described in Section 2.1, caching a small number of hot

items is enough to balance skewed workloads [15, 27].

Technical challenges. We should address several techni-

cal challenges to translate the idea into a working system.

• The switch should maintain multiple requests, espe-

cially for the same cached item. If not, many requests

for cached items would be forwarded to the server as

they cannot be stored in the data plane.

• A cache packet should serve multiple requests once

fetched. Otherwise, the switch must fetch the cache

packet from the server again, degrading performance.

• We should design a cache coherence mechanism be-

tween the switch and storage servers. If not, a request

may read a stale value for the requested key.
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Figure 2: OrbitCache architecture.

• The switch should adapt to key popularity changes.

3 OrbitCache Design

3.1 OrbitCache Architecture

Figure 2 shows the overview of the OrbitCache architecture.

Switch data plane. The switch data plane in OrbitCache

consists of several custom tables and modules as follows.

• Lookup table is for cache lookups, which is a match-

action table that uses a hash of item keys as the match

key. The table returns a table index needed to access

other tables and modules. Cache entries are managed

by the controller in the switch control plane.

• State table, implemented as a register array, maintains

the validity of the value of cached items. This is needed

to prevent read requests from obtaining the stale value

when there are pending writes for the requested key.

• Request table, implemented with multiple register ar-

rays and registers1, stores request metadata like client

IP address, L4 port number, and request sequence num-

ber.

• Key counters consist of two registers and one register

array. The key popularity counter is a register array that

tracks the key popularity for each key. The cache hit

counter and the overflow request counter are registers

that track the total number of cache hits and the total

number of overflow requests for all cached keys. The

controller uses these for cache sizing.

• Cloning module comprises a few match-action tables

for cloning reply packets. Packet cloning is done by the

PRE, a hardware module in the switch ASIC [3].

Meanwhile, the switch invokes the custom processing

logic only for OrbitCache packets by referring to reserved L4

ports. We use UDP to handle messages for better latency like

1In P4 language, a register means an indexed register array. However, in

this paper, we define a register as a single-slot register and a register array

as an indexed register array for better clarification.
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Figure 3: OrbitCache packet format.

existing works [21,27,29] while using TCP for top-k item re-

ports in cache updates. For normal packets, the switch only

applies the traditional packet forwarding logic.

Switch control plane. The controller in the switch control

plane performs cache updates and switch configurations. It

evicts the least popular keys and inserts new hot keys based

on server-side periodic top-k reports for uncached keys and

the switch-side report for cached keys. Note that while the

controller handles key insertion, value fetching is done via

the switch data plane. It also handles switch configurations

like the rule update for packet forwarding tables.

Clients and servers. Clients should specify the opera-

tion type, the item key to request, and the key hash. Storage

servers run a server application that acts as a shim layer that

translates OrbitCache messages to API calls for key-value

stores and vice versa. The server returns replies for read and

write requests like regular storage servers. However, in cases

of write requests for cached items, the server returns a write

reply with the item value as well to fetch the latest value.

3.2 Packet Format

Figure 3 depicts the OrbitCache packet format. The mes-

sage consists of the header and the payload. The switch only

parses the header. The payload of OrbitCache message con-

sists of the key and the value. Our header is 22 bytes. There-

fore, OrbitCache supports a key-value pair of up to 1438

bytes for a single packet when we consider a 1500-byte MTU

packet where 40 bytes are for L3/L4 headers. For example,

the switch can cache an item with a 16-byte key and a 1422-

byte value. Our header fields are as follows.

• OP (1 byte): the operation type, which can be R-REQ

(Read request), W-REQ (Write request), R-REP (Read re-

ply), W-REP (Write reply), F-REQ (Fetch request), F-REP

(Fetch reply), and CRN-REQ (Correction request).

• SEQ (4 bytes): a request ID assigned by the client, which

is used for resolving hash collisions.

• HKEY (16 bytes): the key hash as cache lookup index.

• FLAG (1 byte): a flag field to distinguish write requests

for cached items from those for uncached items.

3.3 Basic Request and Reply Processing

In Figure 4, we illustrate the packet processing logic.
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(a) Read request
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(b) Read reply

�������

����	
�����

���������	

���������

����

������

������

���

����	
��


(c) Write request
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(d) Write reply

Figure 4: Request processing. (a) the switch drops the request after inserting request metadata into the request table; (b) If

a circulating cache packet reads request metadata, the switch clones the packet so that the original packet is forwarded to the

client and the cloned one is recirculated again for further serving; (c) the switch invalidates the item to avoid inconsistent reads

if a write request is for a cached item; (d) upon receiving a write reply for a cached item, the switch validates the item. After

that, the switch clones the packet. The cloned packet is processed as a read reply after updating the operation type.

Request generation at clients. Clients should specify the

OP and HKEY fields. The SEQ field is increased by one for

every request, which is used to resolve hash collisions. The

destination storage server is determined by hashing the key.

Read requests. The switch first refers to the lookup table

using a key hash to get a table index, which is used to access

the slots in other tables. If missed, the switch forwards the

packet to the server as the request is for an uncached item. In

case of a cache hit, the key popularity counter and the cache

hit counter are incremented by one. This key popularity is

collected by the controller in the switch control plane period-

ically for cache updates. Next, the switch checks the validity

of the requested key by looking into the state table. The state

is binary: valid or invalid. Being invalid means that there are

pending write requests for the key. In this case, the switch

forwards the read request to the server to avoid reading stale

item values. If the key is valid, the switch checks the request

table to see whether there is a free slot. The switch puts the

request metadata into the table when a free slot is found. Oth-

erwise, the request is destined to the server after the overflow

request counter is increased. Request metadata includes the

client IP address, L4 port number, and SEQ as request IDs. Af-

ter insertion, the switch drops the packet. This is acceptable

since a cache packet will soon service the stored request.

Read replies. When receiving a read reply, the switch first

checks to see if the ingress port is the recirculation port. If it

is, the reply is a cache packet. Otherwise, it is a reply for an

uncached item sent by the server. For cache packets, if the

cache misses or the state of the value is invalid, the switch

drops the packet. A cache miss for a cache packet means that

the controller evicted the key from the lookup table due to a

change in key popularity or the cache size. The invalid state

indicates a write request with a new value is in progress.

The switch goes through the lookup and state tables, and

then looks for pending requests in the request table. If a re-

quest is found, the switch forwards the cache packet to the

client after updating the header with metadata and removing

the metadata from the table slot. To make the cache packet

serve more requests, the switch clones the packet before for-

warding. The switch forwards the original packet to the client

and the cloned one to the recirculation port. The switch recir-

culates the packet if there are no pending requests.

Write requests. The switch checks whether the requested

key is in the cache lookup table. If it is, the value for the key is

invalidated to prevent reading the outdated value. In addition,

the switch sets the FLAG field to 1 to indicate that this request

is for a cached item. This makes the storage server append

the value in the write reply. Regardless of a cache hit, the

switch forwards the request to the storage server to update

the value of the key in the server.

Write replies. If the key is cached, the switch validates the

value to allow read requests to get the latest value. The switch

clones the packet so that the client receives the write reply

while the switch has a new cache packet simultaneously. The

switch updates the OP field to R-REP of the cloned packet

after the first recirculation since cache packets should be read

replies. For a cache miss, the switch forwards the packet to

the client since the reply is for an uncached item.

Other types of messages. Fetch messages are for cache

updates. Correction messages are for resolving hash colli-

sions. Fetch/correction requests are delivered to the storage

servers. The fetch reply is processed as a write reply.



�������

��������	


�������

����������

���

���

�	
�����

������	

�

�

�����

���
���
�

���

�

�
	�����
�

�

���

��������	�
�������

���	�
�

����������

�������

�����
�

�����
�

�����

������ ������	�����������������

�������� ������

Figure 5: An example of operations in the request table.

3.4 Buffering Request Metadata

Circular queue-based request table. We should store mul-

tiple request metadata for cached items because the requests

should wait until cache packets serve them. The switch

should be able to buffer concurrent read requests for the same

cached item. If not, many requests for the cached item would

be forwarded to the storage server due to the lack of vacan-

cies. Furthermore, a request for a key should be isolated from

requests for other keys since the request may undergo exces-

sive queueing delay due to the different requests.

We design a request table based on a circular queue struc-

ture. Our request table provides a logical queue for each

cached key, and the queue can be accessed in O(1) by effi-

cient indexing. This provides fast and isolated queue access

for a key regardless of other keys. The request table consists

of 6 register arrays: the first three arrays are for storing re-

quest metadata for each key (i.e., client IP address, request

sequence number array, and L4 port number). The other three

arrays are for managing queue operations. The queue length

array maintains the number of stored request metadata for

each key. The front pointer array handles dequeue operations

by tracking the first request metadata for each key. The rear

pointer arrays perform enqueue operations by keeping track

of the last request metadata for each key.

The queue management arrays are indexed using a table

index (CacheIdx) returned by the cache lookup table. The re-

quest metadata arrays are accessed via a request index, which

is defined as ReqIdx =CacheIdx×S+ i where S is the max-

imum queue size per key and i is the offset for ith slot in

the logical queue for a key and is given by the pointer ar-

rays. The switch uses three match-action stages for a request

table. Specifically, the switch first checks the queue status

(Stage 1), and performs en/dequeue operations if the queue

is not full/empty (Stage 2). Next, the switch gets/puts meta-

data from/into the request table (Stage 3).

An example for table operations. Figure 5 shows a sim-

ple example of table operations. We assume that the request

table can maintain up to 4 requests for each key. We consider

enqueueing and dequeueing operations using read requests

and cache packets. In stage 2, the rear pointer changes to 0

from 3 since we implement a circular queue. It is also easy to

see that the request metadata for different keys does not col-

lide since we partition the metadata arrays using the indexing

formula of ReqIdx =CacheIdx×S+ i.

3.5 Cache Serving

Handling multiple requests via packet cloning. In Orbit-

Cache, cache packets pass through the switch data plane re-

peatably to serve pending requests for cached items. One

challenge is serving multiple requests with a cache packet

fetched only once because the cache packet is forwarded to

the client after updating the header using the retrieved meta-

data. A strawman is to fetch the cache packet from the server

again, but this approach is inefficient as the switch cannot

serve pending requests for the key until the fetching is com-

pleted. Fetching multiple copies of the cache packet may be

a solution, but this incurs excessive queueing delay between

cache packets. In addition, it is hard to know how many

cache packets should be fetched because we cannot predict

the number of requests for each cached item in advance.

To address this, we utilize packet cloning, another built-in

feature of the programmable switch ASIC besides packet re-

circulation. Packet cloning is done by the PRE, a hardware

module specialized for packet cloning in the switch ASIC.

Cloning has low overhead for the following reasons. First,

the PRE is located after the ingress pipeline. This means

the switch does not repeat the ingress pipeline processing for

the cloned packet, not causing extra ingress processing delay.

Second, the switch does not copy the entire packet. It only

copies the small descriptor pointing to the memory location

of the packet and reuses the packet data.

We use multicast to forward the original and clone pack-

ets. Through a match-action table using the destination IP ad-

dress acquired from the request table, the switch gets a multi-

cast group ID that specifies the regular port number directed

to the client and the recirculation port number. The switch

forwards the original packet to the client and the cloned one

to the switch data plane again, making it serve more requests.

3.6 Handling Hash Collisions

The existing works use the item key as the match key of the

cache lookup table, which is implemented as a match-action

table. Since the match-key width is limited by hardware, we

cannot use the key exceeding the size limit. We may use a

register array, but the size limitation in the register index is

stricter than in the match-action table. Therefore, we use the

fixed-sized key hash as the match key. A challenge is how

to resolve potential hash collisions. We should handle this

because a request may read the wrong value of other keys.

Client-side collision resolution. We handle hash colli-

sions at the client level by maintaining a list of the keys for

each request that has not yet received a reply. The list is in-

dexed by pkt.seq. Request packets contain both the original

key and the key hash since we should use the original key
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Figure 6: An example of handling hash collisions. The client

gets the correct value by sending a correction request.

to get the value in servers. Upon receiving read replies, the

client checks whether the requested key in the list and the re-

turned key in the reply header are identical. If different, the

client sends a correction request to the server. The switch

then forwards the request without applying the cache logic

so that the client gets the correct item value from the storage

server. We use a simple, low-overhead hash function to cal-

culate key hashes. In addition, the complexity of accessing a

matched slot of the key list is O(1) as it is an indexed array.

Note that a key in the list exists only until the reply arrives.

One issue is that requests for uncached but colliding keys

always undergo this process. However, this is rare since

our 128-bit key hash provides a low collision probability

of 1/2128. In our experience, we never see a hash collision.

There is a corner case when a new hot item uses the table

index of the evicted item after cache updates. In this case,

the pending requests for the evicted item are served by the

new but wrong cache packet. However, they eventually get

the correct value through the correction process with 1-RTT

latency overhead. Meanwhile, the switch drops the collid-

ing cache packet when hash collisions occur due to write re-

quests. To handle this, the server can send the cache packet as

a fetch reply to the switch again if the received write request

is with pkt. f lag = 1 but not in the hot key list.

An example of resolving hash collisions. We plot an ex-

ample of handling hash collisions in Figure 6 where the re-

quested key is DDDD but the returned key is AAAA. Upon re-

ceiving the reply, the client detects that the retrieved value

is wrong by referring to the key list using pkt.seq = 1. The

client then sends a correction request to the storage server.

The switch bypasses the cache logic, and forwards the packet

to the server. The storage server returns the value as a read

reply, and the client finally gets the correct value for the key

DDDD. The client removes the key from the list. pkt.seq wraps

around if it reaches the maximum value.

3.7 Cache Coherence

To ensure cache coherence between the switch and servers,

we design an invalidation-based coherence protocol illus-

trated in Figure 4 (c) and (d). The switch invalidates the

value when handling a write request for a cached item and

revalidates the value upon receiving a write reply. Ideally,
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Figure 7: Cache update. The controller updates the entries

of the cache lookup table by tracking workload changes.

the outdated cache packets should be replaced with the latest

cache packet. However, requests may be returned with the

stale value since the outdated packets are still circulating in

the switch data plane even if the item value becomes invalid.

To address this, the switch drops the cache packet if the item

is cached but its value is invalid. Owing to the fact that the

cache packet is dropped before accessing the request table,

we can prevent read requests from retrieving the stale value

until a new cache packet is fetched. The storage server sends

a single reply packet, and the switch updates the value and

replies to the client simultaneously by cloning the packet.

3.8 Cache Updates

To handle key popularity changes over time, we update cache

entries based on periodic popularity reports from the switch

and storage servers. We count the popularity of cached keys

in the switch data plane using the key popularity counter.

The controller keeps track of key popularity by reading the

counter periodically. Meanwhile, storage servers periodically

report the top-k keys to the controller, which are popular un-

cached keys. The servers use a count-min sketch with five

hash functions to track key popularity in a memory-efficient

manner while ensuring accuracy. To reflect the recent status

only, we reset all the counters to zero after reporting.

If the cache needs to be updated due to a change in key

popularity, the controller deletes the victim key from the

cache lookup table and inserts a new popular key instead.

The controller then sends a fetch request to the storage server

containing the latest value for the key. Upon receiving the re-

quest, the server fetches a new cache packet to the switch

data plane and replies to the controller. The new popular key

inherits the table index (CacheIdx) of the evicted key. With

this, the pending requests for the evicted key can be handled

by the new cache packet and the hash collision resolution

mechanism. Note that the hash collision here is due to the

same table index, not that the hashes actually collide.

3.9 Handling Practical Requirements

Failure handling. For packet loss, we can use an application-

level mechanism. Our controller uses UDP with a timeout-

based mechanism to exchange fetch requests/replies. Storage



servers use TCP to report top-k items to the controller. Mean-

while, server failures do not cause a OrbitCache-specific

problem. Switch failures result in the loss of cached items,

but the cache can be reconstructed quickly by the controller

after the switch is recovered because the switch failure is sim-

ilar to the rapid key popularity changes.

Multi-rack deployment. OrbitCache can be deployed

with multiple racks because the ToR switch caches hot items

of storage servers belonging to its rack only. For example, as-

sume that we have two racks where ToR switches, ToR1 and

ToR2, are interconnected via a spine switch SPN. When CLI,

a client in rack 1, sends a request to SRV , a server in rack 2,

the path for an uncached item is CLI−ToR1−SPN−ToR2−

SRV − ToR2 − SPN − ToR1 −CLI. If the item is cached,

ToR2 is the only switch that applies the cache logic. There is

no issue even if rack 1 is the replicated rack of rack 2 where

the two ToR switches have the same cache entries because

the request is handled by ToR1. If the client is located in an-

other rack and the other two racks are replicated ones, we

can balance requests by implementing load-balancing mech-

anisms in the ToR switch of the client-side rack.

3.10 Discussion

Multi-packet items. Many key-value items are less than the

MTU size. Therefore, existing works in key-value stores gen-

erally consider item values up to 1024 bytes [6,17,26,29–31].

However, some items may exceed the MTU size, such as ar-

ticles and photo objects for some workloads (e.g., Wikipedia

and Flickr [8]). To cache multi-packet items, we should

fetch multiple cache packets with fragmented values for the

same key. To do this, we maintain the number of forwarded

cache packets for each item by placing another register ar-

ray alongside the request table, the ACKed packet counter.

The initial value of each slot is 1 since most items are single-

packet. When fetching item values, the storage server puts

the number of packets comprising the item in the FLAG field.

When handling cache packets, the switch retrieves metadata

as usual, but it does not manipulate the slots of all register ar-

rays in the request table if the slot value in the ACKed packet

counter is not equal to FLAG. Instead, the switch increases the

value by one. When the value in the counter equals to FLAG,

the switch removes metadata as it is ready to be finished.

Write-back caching. FarReach [34] is a recent work that

enables write-back caching. Although it still cannot serve

many workloads due to the size limitation, it provides high

performance regardless of the write ratio. OrbitCache uses

write-through caching, and our performance gain decreases

as the write ratio grows. The difference between write-

through caching and write-back caching is whether a write

request for cached items updates the storage server or not.

Therefore, OrbitCache can also use write-back caching by

letting the switch return write replies upon receiving write

requests after updating the cache only, though we need extra

modules like snapshot generation.

Multi-pipeline deployment. The multi-terabits perfor-

mance of the programmable switch ASIC comes from the

multi-pipelined architecture. Each pipeline consists of tens

of regular ports and one internal recirculation port. Meta-

data and memory data are not shared between the pipelines.

Therefore, the pipelines of client-directed ports and server-

directed ports should be the same. Otherwise, cache packets

in a pipeline may not read requests since they are in another

pipeline. This can be addressed by mapping each pipeline of

the ToR switch to a client-directed port on the spine switches.

This is especially feasible when the clients and servers are in

different racks. We expect this to be addressed more easily

with a new programmable switch architecture like MP5 [35]

that achieves high performance with a logical single pipeline.

4 Implementation

Client-server application. We develop an open-loop appli-

cation in C using NVIDIA Messaging Accelerator library

(VMA) [4]. VMA bypasses kernel network stacks by inter-

cepting the socket function calls and translating them to na-

tive RDMA verbs. The client application measures through-

put and latency by generating requests. The time gap be-

tween consecutive requests follows an exponential distribu-

tion. The server application has multiple threads where each

thread is pinned to a disjoint CPU core. To emulate multiple

storage servers, we assign a partition per thread so that each

thread acts as an independent storage server. We also limit

the Rx throughput of each emulated server to 100K RPS to

ensure the bottleneck is at servers in our testbed. This tech-

nique is used in existing works [21,29,34] as well. In a simi-

lar vein, like NetCache [21], we implement a key-value store

with TommyDS [1], a high-performance hash table library.

Switch. We implement the switch data plane in P416 [9]

for Intel Tofino [3]. We use Intel P4 Studio SDE 9.7.0 to com-

pile the switch data plane. Our prototype uses 9 stages and

6.67% SRAM, 7.38% Match Input Crossbar, 9.29% Hash Bit,

and 30.56% ALUs. The request table has a maximum queue

size of 8 for each key. The controller is written in Python 3.

In our prototype, we use an additional register array for the

request table to store the timestamp of the request for latency

measurement. The OrbitCache header has 3 extra fields of 1-

B Cached, 4-B Latency, and 1-B SrvID. The first two fields

are required to separately measure the latency of requests.

The last field is to store the server ID as we emulate multiple

storage servers as dedicated threads in a physical node.

5 Evaluation

5.1 Methodology

Testbed setup. We build a cluster consisting of 8 nodes,

which are connected by an APS BF6064X-T switch with the
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Figure 8: Throughput with different skewness.

Intel Tofino 1 [3]. The servers are equipped with a 10-core

CPU (Intel i5-12600K @ 3.7 Ghz, 12 hyperthreads and 4

non-hyperthreads), 32 GB of DDR5 memory, and a 100GbE

NVIDIA CX-5 NIC. The servers run Ubuntu 22.04 LTS with

Linux kernel 6.5.0. The 4 nodes act as clients and the remain-

ing 4 nodes are used to emulate multiple storage servers.

Compared schemes. We mainly compare our work with

NoCache and NetCache [21]. NoCache is a mechanism with-

out cache logic. NetCache is the representative in-network

caching architecture. FarReach [34] and DistCache [32] also

adopt the NetCache architecture. We implement the core

caching logic of NetCache, but our implementation provides

items up to 64-byte values across 8 stages with an 8-byte ac-

cessible size per stage. We find that the P4 compiler allocates

only two cache read tables per stage, even with pragma state-

ments. We suspect that this is due to compiler restrictions on

our code. We clarify that this does not mislead the conclu-

sions of our experiments, as there is a negligible difference

in the latency required to read 64 bytes and 128 bytes at line

rate using the same number of match-action stages.

Workloads. We emulate a single storage rack with 32 stor-

age servers using 8 partitioned threads per node. We basi-

cally consider a workload with 10M key-value pairs whose

key popularity skewness follows a Zipfian distribution with

α = 0.99, since it is regarded as typical skewness [7,13]. Al-

though both key and value sizes impact whether an item is

cacheable by NetCache, we use 16-byte keys by default for

simplicity, the maximum supported key size by NetCache.

Instead, we represent the portion of cacheable items using

different ratios between 64 bytes and 1024 bytes values.

The 64-byte value represents a cacheable item value of Net-

Cache. The 1024-byte value is a typical-sized item value

in many workloads and is considered in many research pa-

pers [6, 17, 26, 29–31]. We use a bimodal distribution with

82% 64-byte and 18% 1024-byte values by considering the

cacheable item ratio of NetCache for the Cluster018 work-

load of Twitter [12]. Most experiments are for read-only

workloads as we target read-intensive workloads.

Except for dynamic workloads, we preload the 10K and

128 hottest items for NetCache and OrbitCache, respectively.

128 is a nearly optimal cache size for OrbitCache that pro-
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Figure 9: Load on individual storage servers.

vides the best performance gains. Since NetCache can cache

only 82% of items in the workload, the actual number of

cached items is 8200, which is still larger than the cache

size of OrbitCache by 64×. To be fair, we choose 82% of

keys among the 10K hottest keys with a uniform distribution.

We store the chosen keys as a text file to make experimen-

tal results consistent. The controller loads the file and puts

the keys to the switch cache. We note that trends are usually

consistent, even when using different key samples.

5.2 Main Results

Throughput with different key access distributions. We

measure the throughput with different skewness and plot

the results in Figure 8. We can see that OrbitCache pro-

vides high throughput regardless of skewness, unlike the oth-

ers whose throughput decreases as the workload becomes

more skewed. NetCache does not provide high throughput

as expected since many hot items are not cacheable. In the

Zipf-0.99 workload, OrbitCache has higher throughput than

NoCache and NetCache by 3.59× and 1.95×, respectively.

The server throughput in OrbitCache is consistent across the

given skewness, and this means that the loads are balanced.

Individual server loads. We plot the load on individual

servers in Figure 9. We can see that NoCache and NetCache

do not balance loads well. This is due to the lack of caching

logic for NoCache and many uncacheable hot items for Net-

Cache. However, OrbitCache can balance the loads since Or-

bitCache can cache variable-length items.

Latency vs. throughput. We measure the latency by vary-

ing Tx throughput. Figure 10 shows the median and the 99th

percentile latencies as a function of Rx throughput. Orbit-

Cache provides the best throughput but slightly higher la-

tency than NetCache of 1 microsecond. This is because Net-

Cache has a larger cache size, and requests handled by the

switch dominate in latency data. In addition, in OrbitCache,

requests for cached items should wait until cache packets

read them. Although NetCache has slightly better latency,

throughput is very limited since it fails to balance loads.

Impact of write ratio. Figure 11 reports the throughput

as a function of write ratios. The throughput of OrbitCache
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Figure 10: Latency vs. throughput.
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Figure 11: Impact of write ratio.

decreases as the write ratio grows. This is because the switch

invalidates the cached key when handling a write request for

a cached item to ensure cache coherence. The switch cache

provides performance gains for read requests, the through-

put is decreased with higher write ratios since read requests

for invalid cached items are forwarded to storage servers.

With the 100% write ratio, the throughput of OrbitCache con-

verges to NoCache since the cache does not provide any ben-

efit. Meanwhile, similar to OrbitCache, NetCache offers re-

duced throughput as the write ratio grows since it also inval-

idates the cached key if there is a write for the key.

Scalability. We now inspect whether OrbitCache can bal-

ance loads of different numbers of servers. In this experi-

ment, we limit the Rx throughput to 50K RPS to ensure that

the bottleneck occurs at the storage servers rather than the

clients, even when using 64 servers. In Figure 12 (a), we

can see that the throughput of OrbitCache is improved al-

most linearly while the others do not. Figure 12 (b) clarifies

that this is because NoCache and NetCache fail to balance

imbalanced loads. Balancing efficiency is defined as the min-

imum throughput between the servers divided by the maxi-

mum throughput between the servers.

Performance with production workloads. We con-

duct experiments with several workloads of Twitter [37]

to see how OrbitCache works with various production

workloads. We pick 5 workloads based on the cacheable

item ratio. We assign the workload ID A to D for

Cluster045/016/044/017. We still use the 16-B keys for

simplicity but vary the write ratio, the portion of 64-B val-

ues. Unlike the other experiments, the cacheable item ratio

is controlled by choosing keys with a uniform distribution in-
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Figure 12: Scalability.
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Figure 13: Performance with production workloads.

dependent of the portion of 64-B values. We also use a non-

bimodal version of workload D, by referring to the real trace

of values in Cluster/017 to show the fidelity of bimodal

distributions in our experiments.

Figure 13 shows the results. Although the difference in

throughput varies depending on the used workloads, we can

see that OrbitCache shows the best performance for all the

workloads. There is a little difference for Workload A. This

is because NetCache can cache 95% of items, and the write

ratio is relatively high. Workload E is a workload that shows

a significant performance gap. This is because only 1% of

items are cacheable for NetCache. We can also see that

the trend in workloads D and D(Trace) is very similar. The

slight throughput difference in workload D(Trace) is because

the real trace contains more item values of less than 1024

bytes than the bimodal version. This demonstrates that our

bimodal-distributed workloads successfully reflect the char-

acteristics of real-world workloads.

5.3 Deep Dive

Latency breakdown. Figure 14 (a) and (b) plot the median

and the 99th percentile latency breakdowns, respectively. In

the median latency, OrbitCache shows slightly higher switch

latency than NetCache. This is because requests in Orbit-

Cache should wait until circulating cache packets read them,

resulting in latency overhead. In Figure 14 (b), we can see

that the tail latency of OrbitCache (switch) increases as

throughput grows. This is not surprising because we use a

circular queue-based request table to maintain request meta-

data and packet cloning for a cache hit, resulting in additional

latency overhead. We believe that this is acceptable since Or-
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Figure 15: Impact of cache size.

bitCache can provide much higher throughput than the oth-

ers. In addition, the tail latency of the switch is still tens of

microseconds even when the tail latency of servers soars by

reaching the saturated throughput. We can decrease the tail

latency of the switch by reducing the cache size as well. If

the cache is based on a commodity server, the tail latency

would be 10-100× longer than the switch cache.

Impact of cache size. Figure 15 plots the throughput

breakdown, request latency handled by the switch, and the

overflow request ratio of OrbitCache with different cache

sizes. We can see that the total throughput increases as the

number of cached entries grows. However, the throughput is

saturated with around 128 cached items. Similarly, in Fig-

ure 15 (b), the tail latency increases quickly after 64-128

cached items. Figure 15 (c) clarifies the reason. From 256

cached items, the overflow request ratio rapidly increases,

where the overflow requests indicate the requests for cached

items forwarded to the storage servers due to the lack of free

slots in the request table. The lack of free slots is caused by

the excessive queueing delay between too many cache pack-

ets beyond the capability of the switch hardware. This clari-

fies that the cache size is the key to determining the perfor-
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mance. This also means we should choose an effective cache

size between 32 and 128 to balance the trade-off.

Impact of key size. To see the impact of key size, we mea-

sure throughput and balancing efficiency using different key

sizes. To show the impact of key size more clearly, we use

a value of 100% 64-B. Figure 16 (a) shows that throughput

decreases as key size increases. This is because the server

consumes more computing power when key size is large. Fig-

ure 16 (b) shows that balancing efficiency remains high re-

gardless of throughput changes.

Impact of value size. We measure throughput, balancing

efficiency, and the maximum cache size by varying the value

size. In this experiment, we use the 100% same value size for

all items to inspect how OrbitCache works in the worst case.

Note that 16-B key and 1416-B value are the maximum size

for a single packet payload with 28-B custom header fields.

Figure 17 (a) shows that OrbitCache can balance vari-

ous workloads, including a workload where 100% values are

MTU-sized. The slight drops in throughput are due to the

increased value size. Figure 17 (b) shows the balancing effi-

ciency. We see that OrbitCache generally maintains high bal-

ancing efficiency. Figure 17 (c) plots the effective cache size

that provides the highest performance gain. We can see that
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Figure 18: Comparison to Pegasus [27] and FarReach [34].

the effective cache size decreases as the value size increases.

This is because larger cache packets consume more switch

resources, making the effective cache size small. Neverthe-

less, we can see that OrbitCache can balance the workloads

well since we need only a small number of cached items to

balance skewed workloads.

Comparison to Pegasus and FarReach. We now com-

pare OrbitCache against Pegasus [27] and FarReach [34].

FarReach enables write-back caching in NetCache. Pega-

sus [27] is a selective replication solution where the switch

replicates hot items across storage servers instead of caching

items. We measure throughput using different key access

distributions for Pegasus and different write ratios for Far-

Reach. Figure 18 (a) shows the result for Pegasus. We can

see that OrbitCache outperforms Pegasus for all the key ac-

cess distributions. This is because the switch of OrbitCache

provides extra throughput, whereas the throughput of Pega-

sus is limited to the throughput of storage servers. Pegasus

is better than NetCache as it provides variable-length items.

Figure 18 (b) shows the result for FarReach. OrbitCache out-

performs FarReach until 25% of write ratio since FarReach

has a limited cacheable item size like NetCache. However,

when the write ratio grows, the performance gap with Orbit-

Cache decreases. Over 25% of write ratio, FarReach shows

better throughput than OrbitCache. This is because the write

latency of FarReach is shorter than OrbitCache as it only up-

dates the value of the item in the switch using write-back

caching. OrbitCache updates the value of the switch and the

server at the same time.

Handling dynamic workloads. We investigate how Orbit-

Cache reacts to dynamic workloads. Like existing works [21,

29, 34], we use a hot-in pattern, which is the most radical

workload change. We use 4 storage servers without server

emulation and Rx rate limits similar to a previous work [34]

to avoid inaccuracy due to the system state change. Every 10

seconds, the popularity of the 128 coldest items and the 128

hottest items is swapped.

Figure 19 (a) shows the throughput for 60 seconds. We

can see that the throughput decreases when key popularity

changes but recovers within a few seconds. This is because

the controller in the switch control plane quickly updates the

cache entries and fetches cache packets based on the top-k re-
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Figure 19: Performance with dynamic workloads.

port of servers and the cache popularity counter of the switch

data plane. Figure 19 (b) plots the change in the overflow re-

quest ratio over time. We can see that the ratio soars when

the key popularity changes. This is because it takes time to

fetch items from storage servers.

6 Related work

Storage systems are major target domains of recent in-

network computing works (e.g., [11, 14, 18–25, 27, 28, 36,

38–40]). NetCache [21] shows the potential and limita-

tions of switch-based caching. The limitation in the item

size is passed down to recent works like FarReach [34]

and DistCache [32]. OrbitCache enables variable-length in-

network caching by leveraging built-in features of the switch.

SwitchKV [29] employs the Openflow switch for cache

lookups while items are cached in a cache node. Although

this reduces the lookup overhead, it still provides limited per-

formance due to server-based caching.

7 Conclusion

We proposed OrbitCache, an in-network caching architecture

that is capable of variable-length caching in programmable

switches. The key idea of OrbitCache is to make cached

key-value pairs revisit the switch data plane continuously

by leveraging packet replication efficiently. Experimental

results demonstrated that OrbitCache can balance skewed

workloads with diverse conditions. We hope that this work

can contribute to the research community by providing in-

sights that utilizing built-in hardware features has great po-

tential to make in-network computing solutions effective.
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