
Network-Accelerated Multiget Coordination
for Distributed Key-Value Stores

Jiyoon Bang and Gyuyeong Kim
IEEE CCGrid 2025

Key-value stores

2

Providing high performance
while ensuring strict SLOs

Handling large volumes of
concurrent requests

< SLOs

Key-value stores
req

req
...

• Key-value stores have been fundamental building blocks for modern online services
- To access key-value pairs quickly

Multiget operations in key-value stores
• Many key-value stores support a multiget operation

- Batches get operations for multiple keys to get the values within a single request
- Meta leverages the multiget to improve the performance of Memcached*

3

Can reduce client-side overhead and latency

Client Server

Get operation Multiget operation

Client
Multiget([A, B, C])

Reply ({A, 1}, {B, 2}, {C, 3})
Server

Get(A)
Get(B)
Get(C)

*Rajesh Nishtala et al., “Scaling Memcache at Facebook,” in Proc. of USENIX NSDI, 2013.

Reply(A, 1)
Reply(B, 2)
Reply(C, 3)

Multiget coordination overhead
• The requested keys are distributed over multiple storage servers
• The multiget operation requires extra coordination

- Split a single request into multiple sub-requests
- Aggregate sub-replies into a single reply

4

Server
1

Server
2

Server
3

Client

Multiget([A, B, C])

Reply aggregationRequest splitting

Server
1

Server
2

Server
3

Client

Existing architectures: Client-based
• The client application is responsible for both request splitting and reply aggregation

- e.g., Redis, Memcached, and RocksDB

5

Client

Server 1

① Multiget([A, B, C]) Server 2

② Get(A,C)

② Get(B)

Request splitting

Switch

Existing architectures: Client-based

6

Client

Server 1

Server 2

Reply aggregation

④ Aggregate([A, 1], [B, 2], [C,3])

Switch
Replies

High throughput Low latency

• The client application is responsible for both request splitting and reply aggregation
- e.g., Redis, Memcached, and RocksDB

Existing architectures: Coordinator-based

7

Client

Server 1

① Multiget([A, B, C])
Server 2

Request splitting

CoordinatorSwitch

• A dedicated coordinator node coordinate multiget operations
- e.g., Cassandra, DynamoDB, and MongoDB

Existing architectures: Coordinator-based

8

Reply aggregation

Client Coordinator

Server 1

Server 2
④ Aggregate([A, 1], [B, 2], [C,3])

⑤ Reply
Switch

Low client overhead Scalable High throughput

• A dedicated coordinator node coordinate multiget operations
- e.g., Cassandra, DynamoDB, and MongoDB

Existing architectures

9

Client-based Coordinator-based

• Existing architectures cannot achieve high throughput, low latency, and scalability at
the same time

Existing architectures

10

Client-based Coordinator-based

• Existing architectures cannot achieve high throughput, low latency, and scalability at
the same time

How can we coordinate the multiget operation to achieve
high throughput, low latency, and scalability simultaneously?

NetMC: Network-accelerated multiget coordination

11

Request splitting on programmable switch
- Well-suited for stateless and I/O-intensive request splitting

- Can process billions of packets per second

- Can customize the packet processing logic in the switch data plane

Reply aggregation on clients
- Suitable for stateful operations and complex logic for variable-length data

• Dividing the work of multiget coordination between the network switch and the client
- Each coordination function is best performed at its vantage point

NetMC

Technical challenges
• How to realize switch-based request splitting?

- Limited memory access
- Limited computational capability

- Not support loops and modulo operations for a random number

12

Simplifying the switch mechanism as much as possible
- Through the client-side assistance that puts metadata as hints into the custom packet header

NetMC architecture

13

Switch data plane modules

Clients

Key group identification
- Identify the current key group
- Check if there are more key groups to process

Packet addressing
- Assign the target storage server's IP for the current key group

Sub-request generation
- Generate sub-requests

Switch assist
- Put extra metadata into the packet header

Reply aggregation
- Aggregate sub-replies from storage servers

Key group: a subset of keys belonging to the same target server

Multiget request generation at clients
• The client generates a multiget request

- Retrieves the values of keys {A,B,C,D} that are distributed across 3 storage servers

14

OP ID … NUMKEY KEYIDX SRV1 SRV2 SRV3 KEYS
MGET 1001 … 4 01112 1 2 3 A D B C

Client

① Mget(A, B, C, D)

A, D

Server 2Server 1 Server 3

B C

② Sort keys as [A, D, B, C]

Hash-partitioned storage servers

③

Request splitting at switch data plane
• Step 1: check if it is the cloned packet
• Step 2: identify the current key group and update the metadata

15

Client Cloned?

Servers
pkt.clo=1?

Update

pkt.keyidx

ToR Switch

… OID CLO STARTIDX NUMKEY KEYIDX … KEYS

… 1 0 0 4 01112 … A D B C

Update

pkt.numkey

N

NUMKEY KEYIDX

2 11002

Request splitting at switch data plane
• Step 3: assign the target server's IP for the current key group

16

Read

pkt.oid=1

Read

meta.SrvID=1

ToR Switch

Update

pkt.dstIP
Servers

Client

AddrTable

SrvID
GetSRV1()
GetSRV2()
GetSRV3()

SrvIDTable

Action GetSRV1()={
meta.SrvID = pkt.srv1

}

DstIP
10.0.1.101
10.0.1.102
10.0.1.103

pkt.dstIP = 10.0.1.101

Request splitting at switch data plane
• Step 4: check if there are more key groups to process
• Step 5: generate a sub-request

17

Servers

CloneFinished?

pkt.keyidx=0?

ToR Switch

KEYIDX

11002

Update

pkt.clo

Original
Client

N

CLO

1

Cloned

… OID CLO STARTIDX NUMKEY KEYIDX …
… 1 0 0 2 11002 …

Request splitting at switch data plane
• Step 6: update the metadata of the cloned packet for the next processing

18

Cloned?

pkt.clo=1?
Servers

Update

pkt.oid

… OID CLO STARTIDX NUMKEY …

… 1 1 0 2 …

Update

pkt.startidx

Client
Y

OID

2
STARTIDX

2

ToR Switch

Reply aggregation at clients
• The client appends the contained key-value pairs to the aggregation table

- The reply is committed when the number of remaining keys becomes zero

19

Client

ID KEY1 KEY2

1001 B C

ID VALUE1 VALUE2

1001 22 33

Server 1

Aggregation Table

ID # of Remaining Keys

1001 2

KEY3 KEY4

A D

VALUE3 VALUE4

11 44

Key Array

Value Array

SubReq. Array ID # of Remaining Keys

1001 0
OP ID NUMKEY … KEYS VALUES

MGET
REPLY 1001 2 … A D 11 44

Evaluation

20

*Waleed Reda, Marco Canini, Lalith Suresh, Dejan Kostić, and Sean Braithwaite, “Rein: Taming Tail Latency in Key-Value Stores via Multiget Scheduling,” in Proc. of ACM EuroSys, 2017.

• Testbed
- 6.5Tbps Intel Tofino switch
- 8 servers with NVIDIA ConnectX-5 100G NIC

• Baseline
- CliMC (Client-based architecture)
- CoordiMC (Coordinator-based architecture)

• Workloads
- 5% write ratio
- Production workload distribution* with zipf-0.99

Throughput vs. skewness

21

NetMC is resilient to skewness in key distributions

1.94×
1.11×

Latency vs. throughput

22

1.66×

Median latency 99th percentile latency

NetMC consistently achieves the lowest latency across most throughput levels

Application: Redis

23

1.67×

NetMC achieves high throughput and low latency when integrated with Redis

1.15×

Scalability

24

1.19× 1.86×

Skewed workload Uniform workload

NetMC provides the best throughput regardless of the number of servers

Impact of multiget size

25

1.55×1.17×5.28×

Throughput 99th percentile latency

NetMC is robust to workload dynamics in terms of the multiget size

Impact of value size

26

Throughput 99th percentile latency

NetMC is robust to changes in value size

Conclusion

• We presented NetMC, a network-accelerated multiget coordination architecture
- Providing high throughput, low latency, and scalability simultaneously

• NetMC offloads stateless and I/O-intensive request splitting to the programmable switch
while handling stateful reply aggregation at the client

- Our experimental results demonstrated that NetMC outperforms existing architectures

• We hope to fully leverage in-network computing capabilities to improve multiget operations
and reduce coordination overhead in distributed key-value storage systems

27

Thank you!
Questions?

	Network-Accelerated Multiget Coordination �for Distributed Key-Value Stores
	Key-value stores
	Multiget operations in key-value stores
	Multiget coordination overhead
	Existing architectures: Client-based
	Existing architectures: Client-based
	Existing architectures: Coordinator-based
	Existing architectures: Coordinator-based
	Existing architectures
	Existing architectures
	NetMC: Network-accelerated multiget coordination
	Technical challenges
	NetMC architecture
	Multiget request generation at clients
	Request splitting at switch data plane
	Request splitting at switch data plane
	Request splitting at switch data plane
	Request splitting at switch data plane
	Reply aggregation at clients
	Evaluation
	Throughput vs. skewness
	Latency vs. throughput
	Application: Redis
	Scalability
	Impact of multiget size
	Impact of value size
	Conclusion
	슬라이드 번호 28

