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Key-value stores
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Providing high performance 
while ensuring strict SLOs

Handling large volumes of 
concurrent requests

< SLOs

Key-value stores
req

req
...

• Key-value stores have been fundamental building blocks for modern online services
- To access key-value pairs quickly



Multiget operations in key-value stores
• Many key-value stores support a multiget operation

- Batches get operations for multiple keys to get the values within a single request
- Meta leverages the multiget to improve the performance of Memcached*
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Can reduce client-side overhead and latency

Client Server

Get operation Multiget operation

Client
Multiget([A, B, C])

Reply ({A, 1}, {B, 2}, {C, 3})
Server

Get(A)
Get(B)
Get(C)

*Rajesh Nishtala et al., “Scaling Memcache at Facebook,” in Proc. of USENIX NSDI, 2013.

Reply(A, 1)
Reply(B, 2)
Reply(C, 3)



Multiget coordination overhead
• The requested keys are distributed over multiple storage servers
• The multiget operation requires extra coordination 

- Split a single request into multiple sub-requests
- Aggregate sub-replies into a single reply
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Existing architectures: Client-based
• The client application is responsible for both request splitting and reply aggregation

- e.g., Redis, Memcached, and RocksDB
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Existing architectures: Client-based
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Client

Server 1

Server 2

Reply aggregation

④ Aggregate([A, 1], [B, 2], [C,3])

Switch
Replies

High throughput Low latency

• The client application is responsible for both request splitting and reply aggregation
- e.g., Redis, Memcached, and RocksDB



Existing architectures: Coordinator-based

7

Client

Server 1

① Multiget([A, B, C])
Server 2

Request splitting

CoordinatorSwitch

• A dedicated coordinator node coordinate multiget operations
- e.g., Cassandra, DynamoDB, and MongoDB



Existing architectures: Coordinator-based
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Reply aggregation

Client Coordinator

Server 1

Server 2
④ Aggregate([A, 1], [B, 2], [C,3])

⑤ Reply
Switch

Low client overhead Scalable  High throughput

• A dedicated coordinator node coordinate multiget operations
- e.g., Cassandra, DynamoDB, and MongoDB



Existing architectures
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Client-based Coordinator-based

• Existing architectures cannot achieve high throughput, low latency, and scalability at 
the same time



Existing architectures
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Client-based Coordinator-based

• Existing architectures cannot achieve high throughput, low latency, and scalability at 
the same time

How can we coordinate the multiget operation to achieve 
high throughput, low latency, and scalability simultaneously? 



NetMC: Network-accelerated multiget coordination
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Request splitting on programmable switch
- Well-suited for stateless and I/O-intensive request splitting

- Can process billions of packets per second

- Can customize the packet processing logic in the switch data plane

Reply aggregation on clients
- Suitable for stateful operations and complex logic for variable-length data

• Dividing the work of multiget coordination between the network switch and the client
- Each coordination function is best performed at its vantage point

NetMC



Technical challenges 
• How to realize switch-based request splitting?

- Limited memory access
- Limited computational capability  

- Not support loops and modulo operations for a random number
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Simplifying the switch mechanism as much as possible
- Through the client-side assistance that puts metadata as hints into the custom packet header



NetMC architecture
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Switch data plane modules

Clients

Key group identification
- Identify the current key group 
- Check if there are more key groups to process

Packet addressing
- Assign the target storage server's IP for the current key group

Sub-request generation
- Generate sub-requests

Switch assist
- Put extra metadata into the packet header

Reply aggregation
- Aggregate sub-replies from storage servers

Key group: a subset of keys belonging to the same target server 



Multiget request generation at clients
• The client generates a multiget request

- Retrieves the values of keys {A,B,C,D} that are distributed across 3 storage servers

14

OP ID … NUMKEY KEYIDX SRV1 SRV2 SRV3 KEYS
MGET 1001 … 4 01112 1 2 3 A D B C

Client

① Mget(A, B, C, D)

A, D

Server 2Server 1 Server 3

B C

② Sort keys as [A, D, B, C]

Hash-partitioned storage servers

③



Request splitting at switch data plane
• Step 1: check if it is the cloned packet
• Step 2: identify the current key group and update the metadata
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Request splitting at switch data plane
• Step 3: assign the target server's IP for the current key group
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Read

pkt.oid=1

Read

meta.SrvID=1

ToR Switch
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pkt.dstIP
Servers
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SrvID
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SrvIDTable

Action GetSRV1()={
meta.SrvID = pkt.srv1

}

DstIP
10.0.1.101
10.0.1.102
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pkt.dstIP = 10.0.1.101



Request splitting at switch data plane
• Step 4: check if there are more key groups to process
• Step 5: generate a sub-request
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Request splitting at switch data plane
• Step 6: update the metadata of the cloned packet for the next processing
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Reply aggregation at clients 
• The client appends the contained key-value pairs to the aggregation table 

- The reply is committed when the number of remaining keys becomes zero
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Client

ID KEY1 KEY2

1001 B C

ID VALUE1 VALUE2

1001 22 33

Server 1

Aggregation Table

ID # of Remaining Keys

1001 2 

KEY3 KEY4

A D

VALUE3 VALUE4

11 44

Key Array

Value Array

SubReq. Array ID # of Remaining Keys

1001 0 
OP ID NUMKEY … KEYS VALUES

MGET
REPLY 1001 2 … A D 11 44



Evaluation
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*Waleed Reda, Marco Canini, Lalith Suresh, Dejan Kostić, and Sean Braithwaite, “Rein: Taming Tail Latency in Key-Value Stores via Multiget Scheduling,” in Proc. of ACM EuroSys, 2017.

• Testbed
- 6.5Tbps Intel Tofino switch 
- 8 servers with NVIDIA ConnectX-5 100G NIC

• Baseline
- CliMC (Client-based architecture)
- CoordiMC (Coordinator-based architecture)

• Workloads
- 5% write ratio
- Production workload distribution* with zipf-0.99



Throughput vs. skewness
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NetMC is resilient to skewness in key distributions

1.94×
1.11×



Latency vs. throughput
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1.66×

Median latency 99th percentile latency

NetMC consistently achieves the lowest latency across most throughput levels



Application: Redis
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1.67×

NetMC achieves high throughput and low latency when integrated with Redis

1.15×



Scalability
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1.19× 1.86×

Skewed workload Uniform workload

NetMC provides the best throughput regardless of the number of servers



Impact of multiget size
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1.55×1.17×5.28×

Throughput 99th percentile latency

NetMC is robust to workload dynamics in terms of the multiget size



Impact of value size 
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Throughput 99th percentile latency

NetMC is robust to changes in value size



Conclusion

• We presented NetMC, a network-accelerated multiget coordination architecture
- Providing high throughput, low latency, and scalability simultaneously

• NetMC offloads stateless and I/O-intensive request splitting to the programmable switch 
while handling stateful reply aggregation at the client

- Our experimental results demonstrated that NetMC outperforms existing architectures

• We hope to fully leverage in-network computing capabilities to improve multiget operations 
and reduce coordination overhead in distributed key-value storage systems
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Thank you!
Questions?
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