Network-Accelerated Multiget Coordination
for Distributed Key-Value Stores

Jiyoon Bang and Gyuyeong Kim
IEEE CCGrid 2025

) AAoxieta

SUNGSHIN WOMEN'S UNIVERSITY

Key-value stores

» Key-value stores have been fundamental building blocks for modern online services

- To access key-value pairs quickly

. = :
\ /
[\

lllll -0
M= 0

1MII=9

Handling large volumes of
concurrent requests

‘ e E— . /=
lllll -0

4+ —) o —o
||||| -0

Providing high performance
while ensuring strict SLOs

DynamoDB

redis

%

cassandra

J

Multiget operations in key-value stores

 Many key-value stores support a multiget operation
- Batches get operations for multiple keys to get the values within a single request
- Meta leverages the multiget to improve the performance of Memcached*

Reply(A. 1)_,. Multiget([A, B, C])
[Client Reply(B, 2) [Client]; -------------------------------
ER@p'y(Ca S—> Reply ({A, 1}, {B, 2}, {C, 3})
Get operation Multiget operation

Can reduce client-side overhead and latency

*Rajesh Nishtala et al., “Scaling Memcache at Facebook,” in Proc. of USENIX NSDI, 2013.

Multiget coordination overhead

* The requested keys are distributed over multiple storage servers

« The multiget operation requires extra coordination
- Split a single request into multiple sub-requests
- Aggregate sub-replies into a single reply

Request splitting Reply aggregation

[Client

Existing architectures: Client-based

» The client application is responsible for both request splitting and reply aggregation
- e.g., Redis, Memcached, and RocksDB

Request splitting Server 1
N @ Get(A,C)
[Client | | Switch
’ 1 @Get(B) |
@ Multiget([A, B, C]) tommermeemmeemeeeee ; Ch——

Existing architectures: Client-based

» The client application is responsible for both request splitting and reply aggregation
- e.g., Redis, Memcached, and RocksDB

Reply aggregation
5 ® e e

Replies | E————— |y
5 { Client]:| Switch |] e

High throughput BE 28 NeAFEIEN (6,

Existing architectures: Coordinator-based

» A dedicated coordinator node coordinate multiget operations
- e.g., Cassandra, DynamoDB, and MongoDB

Request splitting

=
1

[Client J_' Switch Coordinator

@ Multiget([A, B, C])

Existing architectures: Coordinator-based

» A dedicated coordinator node coordinate multiget operations
- e.g., Cassandra, DynamoDB, and MongoDB

Reply aggregation

. @ Reply ““““““
Client e Switch | J* ‘| Coordinator [*:-....
.......epa/(B

....... 2
® Aggregate([A, 1], B, 2}, [C.3))
. Low client overhead [ASTeZIELIEN MR AN le]sRiglelile]aTell]

Existing architectures

 Existing architectures cannot achieve high throughput, low latency, and scalability at
the same time

—+ _ J Clients J
Clients - n ’
see A‘.--A (!)

) Wy it . Switch
Switch 1

A 4 4 Coordinator
. : : L -
Storage Servers Storage Servers

Coordinator-based

Client-based

Existing architectures

 Existing architectures cannot achieve high throughput, low latency, and scalability at
the same time

(T e [Clens)]

How can we coordinate the multiget operation to achieve
high throughput, low latency, and scalability simultaneously?

A 4 4 Coordinator
: : : — ; —

Storage Servers Storage Servers

Coordinator-based

Client-based

NetMC: Network-accelerated multiget coordination

 Dividing the work of multiget coordination between the network switch and the client
- Each coordination function is best performed at its vantage point

- Well-suited for stateless and I/O-intensive request splitting

Programmable
SW|tch_/\'

- Can process billions of packets per second

[

Storage Servers .

NetMC

4
[Clients U Request splitting on programmable switch

11

Technical challenges

* How to realize switch-based request splitting?
- Limited memory access

- Limited computational capability
- Not support loops and modulo operations for a random number

® Simplifying the switch mechanism as much as possible

- Through the client-side assistance that puts metadata as hints into the custom packet header

L2/L3/L4 Headers

ETH| IP |(UDP| NETMC HEADER BN =3 AR/ VN0 | SR v/.\ R 01 =
‘ Index indicating Server |IDs
@acket ID| |#ofkeys | where to read from to send

D| NUMKEY | KEYIDX | STARTIDX | CLO | SRV, u

OP | ID | Ol
Request Type Order of ‘ Index for the keys sent Is it a clone?

packets to the same server

NetMC architecture

Clients

Reply

Aggregation

- Put extra metadata into the packet header

Reply aggregation

r
I
I
/: Switch assist
I
I
I
I
: - Aggregate sub-replies from storage servers
I

Sub-request generation

1
I
I
L2/L3 Key Group Request || Sub-Request I : T
Routing || Identification || Addressing || Generation | ~J Key grO_Up identification
ToR Switeh : - Identify the current key group
o SWie 1 - Check if there are more key groups to process
I
SE8 - 888 || e
Servers : - Assign the target storage server's IP for the current key group
I
I
I

- Generate sub-requests

Key group: a subset of keys belonging to the same target server

L ——

Multiget request generation at clients

* The client generates a multiget request
- Retrieves the values of keys {A,B,C,D} that are distributed across 3 storage servers

Hash-partitioned storage servers

@D Mget(A, B, C, D) e mmmmmmm—e—— oo
|
| |
| |
| | |
@ Sort keys as [A, D, B, C] X _S_e["_er_l N _S_eT’_e'lz_ N _S_efv_e[?i X

NUMKEY KEYIDX SRV, SRV, SRV,

MGET 1001 | ... 4 0111, 1 2 3 AlD|B|C

14

Request splitting at switch data plane

» Step 1: check ifit is the cloned packet

« Step 2: identify the current key group and update the metadata

ToR Switch

Update Update

N
Client

pkt.clo=17?

pkt.keyidx pkt.numkey

DI NN =08 NUMKEY | KEYIDX
4 0111, |...[A|D|B|C

Servers

v
NUMKEY | KEYIDX

2 1100,

15

Request splitting at switch data plane

» Step 3: assign the target server's IP for the current key group

=

ToR Switch
Read Read Update
pkt.oid=1 meta.SrviD=1 pkt.dstIP

Action GetSRV1()={

ﬁ

meta.SrvID = pkt.srv,

}

GetSRV1()

GetSRV2()
GetSRV3()

SrviDTable

—

Servers

DstIP

10.0.1.101 pkt.dstiP = 10.0.1.101

10.0.1.102
10.0.1.103

AddrTable

Request splitting at switch data plane

« Step 4: check if there are more key groups to process
» Step 5: generate a sub-request

Clon J

ToR Switch

Original
>

- S S S S D S B D S B D B B S B D G B e B DS B B e S e mee mee e s sl

Request splitting at switch data plane

» Step 6: update the metadata of the cloned packet for the next processing

ToR Switch
Y
[Client J —> Update Update
pkt.clo=17? pkt.oid pkt.startidx

Servers

Reply aggregation at clients

* The client appends the contained key-value pairs to the aggregation table
- The reply is committed when the number of remaining keys becomes zero

Server 1

1001| B C A | D |

— — — — — — — — — — — — —

ID VALUE, VALUE,

— — — — — — — — — — — — —

Aggregation Table

/

|

|

|

|

: | n

|' [Cl'entJ Value Array : “““ Tl

. . | 1001 22 33 11 | 44 |

:

|

|

|

\

19

Evaluation

» Testbed
- 6.5Tbps Intel Tofino switch
- 8 servers with NVIDIA ConnectX-5 100G NIC

« Baseline
- CIiMC (Client-based architecture)
- CoordiMC (Coordinator-based architecture)

 Workloads

- 5% write ratio
- Production workload distribution* with zipf-0.99

*Waleed Reda, Marco Canini, Lalith Suresh, Dejan Kosti¢, and Sean Braithwaite, “Rein: Taming Tail Latency in Key-Value Stores via Multiget Scheduling,” in Proc. of ACM EuroSys, 2017.
20

Throughput vs. skewness

1.94 x

500 l
N CliMC
0. 400 - B CoordiMC

"/ NetMC
5 300 11 x === =
-]
<200 - /I-
=)
0

Uniform Zipf-0.9

Skewness

Zipf-0.95

Zipf-0.99

NetMC is resilient to skewness in key distributions

21

Latency vs. throughput

600 2000

g g

%400 51500 66 x

o 21000 |

A 200 CliMC S

2 100 | —=-CoordiMC | 2 5007

3 ; ~-NetMC S)

0 100 200 300 400 0 100 200 300 400
Throughput (KRPS) Throughput (KRPS)
Median latency 99th percentile latency

NetMC consistently achieves the lowest latency across most throughput levels

Application: Redis

300 | . | ‘
D CliMC
0. 250 | Il CoordiMC™
£200 N 1/15 tNG’[MC |
15 x
5150_ Zi ma 74_]1.67)(
Qo
S
=100 - R
o
— 50+ l .
|_
0 L
Uniform Zipf-0.9 Zipf-0.95 Zipf-0.99

Skewness

NetMC achieves high throughput and low latency when integrated with Redis

Scalability

g 300 CIiMCI

o - CoordiMC O

a

§200 _+Net|\/|C 1.86 x

2 -

2100

O

= 50

- 0 , ,

1 2 3 4 5 1 2 3 4 5
Number of Servers Number of Servers

Skewed workload Uniform workload

NetMC provides the best throughput regardless of the number of servers

24

Impact of multiget size

—~1200 ' ‘ ' ' 2000

i ciMC | @

o l -=-CoordMC | = 1500 +

N >

< 800 ~4-NetMC O

=2 Q L

2 5.28 x 17 2 1000

> 400 | —o' 500 |

2 00—, :

e (@)

1 2 4 8 16 32 1 2 4 8 16 32
Average Number of Keys Average Number of Keys
Throughput 99th percentile latency

NetMC is robust to workload dynamics in terms of the multiget size

1.55x

25

Impact of value size

500 '
%) CIiMC 20000
c= 400 - -=-CoordiMC 1 4
>
&)
-
)
©
-
0 I |
2100 N
ANERTHINIRNIRRE Y oo s amn csn 45111
32 64 128 256 512 1024 32 64 128 256 512 1024
Value Size (Bytes) Value Size (Bytes)
Throughput 99th percentile latency

NetMC is robust to changes in value size

26

Conclusion

 We presented NetMC, a network-accelerated multiget coordination architecture

- Providing high throughput, low latency, and scalability simultaneously

* NetMC offloads stateless and I/O-intensive request splitting to the programmable switch
while handling stateful reply aggregation at the client

- Our experimental results demonstrated that NetMC outperforms existing architectures

« We hope to fully leverage in-network computing capabilities to improve multiget operations
and reduce coordination overhead in distributed key-value storage systems

27

Thank you!

Questions?

	Network-Accelerated Multiget Coordination �for Distributed Key-Value Stores
	Key-value stores
	Multiget operations in key-value stores
	Multiget coordination overhead
	Existing architectures: Client-based
	Existing architectures: Client-based
	Existing architectures: Coordinator-based
	Existing architectures: Coordinator-based
	Existing architectures
	Existing architectures
	NetMC: Network-accelerated multiget coordination
	Technical challenges
	NetMC architecture
	Multiget request generation at clients
	Request splitting at switch data plane
	Request splitting at switch data plane
	Request splitting at switch data plane
	Request splitting at switch data plane
	Reply aggregation at clients
	Evaluation
	Throughput vs. skewness
	Latency vs. throughput
	Application: Redis
	Scalability
	Impact of multiget size
	Impact of value size
	Conclusion
	슬라이드 번호 28

