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Key-value stores

» Key-value stores have been fundamental building blocks for modern online services

- To access key-value pairs quickly
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Multiget operations in key-value stores

 Many key-value stores support a multiget operation
- Batches get operations for multiple keys to get the values within a single request
- Meta leverages the multiget to improve the performance of Memcached*
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Can reduce client-side overhead and latency

*Rajesh Nishtala et al., “Scaling Memcache at Facebook,” in Proc. of USENIX NSDI, 2013.



Multiget coordination overhead

* The requested keys are distributed over multiple storage servers

« The multiget operation requires extra coordination
- Split a single request into multiple sub-requests
- Aggregate sub-replies into a single reply

Request splitting Reply aggregation
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Existing architectures: Client-based

» The client application is responsible for both request splitting and reply aggregation
- e.g., Redis, Memcached, and RocksDB
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Existing architectures: Client-based

» The client application is responsible for both request splitting and reply aggregation
- e.g., Redis, Memcached, and RocksDB
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Existing architectures: Coordinator-based

» A dedicated coordinator node coordinate multiget operations
- e.g., Cassandra, DynamoDB, and MongoDB
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Existing architectures: Coordinator-based

» A dedicated coordinator node coordinate multiget operations
- e.g., Cassandra, DynamoDB, and MongoDB

Reply aggregation
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Existing architectures

 Existing architectures cannot achieve high throughput, low latency, and scalability at
the same time
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Existing architectures

 Existing architectures cannot achieve high throughput, low latency, and scalability at
the same time
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How can we coordinate the multiget operation to achieve
high throughput, low latency, and scalability simultaneously?
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NetMC: Network-accelerated multiget coordination

 Dividing the work of multiget coordination between the network switch and the client
- Each coordination function is best performed at its vantage point

- Well-suited for stateless and I/O-intensive request splitting
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- Can process billions of packets per second
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Technical challenges

* How to realize switch-based request splitting?
- Limited memory access

- Limited computational capability
- Not support loops and modulo operations for a random number

® Simplifying the switch mechanism as much as possible

- Through the client-side assistance that puts metadata as hints into the custom packet header
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NetMC architecture

Clients

Reply

Aggregation

- Put extra metadata into the packet header

Reply aggregation
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Multiget request generation at clients

* The client generates a multiget request
- Retrieves the values of keys {A,B,C,D} that are distributed across 3 storage servers

Hash-partitioned storage servers
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Request splitting at switch data plane

» Step 1: check ifit is the cloned packet

« Step 2: identify the current key group and update the metadata
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Request splitting at switch data plane

» Step 3: assign the target server's IP for the current key group
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Request splitting at switch data plane

« Step 4: check if there are more key groups to process
» Step 5: generate a sub-request
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Request splitting at switch data plane

» Step 6: update the metadata of the cloned packet for the next processing
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Reply aggregation at clients

* The client appends the contained key-value pairs to the aggregation table
- The reply is committed when the number of remaining keys becomes zero
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Evaluation

» Testbed
- 6.5Tbps Intel Tofino switch
- 8 servers with NVIDIA ConnectX-5 100G NIC

« Baseline
- CIiMC (Client-based architecture)
- CoordiMC (Coordinator-based architecture)

 Workloads

- 5% write ratio
- Production workload distribution* with zipf-0.99

*Waleed Reda, Marco Canini, Lalith Suresh, Dejan Kosti¢, and Sean Braithwaite, “Rein: Taming Tail Latency in Key-Value Stores via Multiget Scheduling,” in Proc. of ACM EuroSys, 2017.
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Throughput vs. skewness
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NetMC is resilient to skewness in key distributions
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Latency vs. throughput
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NetMC consistently achieves the lowest latency across most throughput levels



Application: Redis
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Scalability
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Impact of multiget size
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Impact of value size
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26



Conclusion

 We presented NetMC, a network-accelerated multiget coordination architecture

- Providing high throughput, low latency, and scalability simultaneously

* NetMC offloads stateless and I/O-intensive request splitting to the programmable switch
while handling stateful reply aggregation at the client

- Our experimental results demonstrated that NetMC outperforms existing architectures

« We hope to fully leverage in-network computing capabilities to improve multiget operations
and reduce coordination overhead in distributed key-value storage systems

27



Thank you!

Questions?



	Network-Accelerated Multiget Coordination �for Distributed Key-Value Stores
	Key-value stores
	Multiget operations in key-value stores
	Multiget coordination overhead
	Existing architectures: Client-based
	Existing architectures: Client-based
	Existing architectures: Coordinator-based
	Existing architectures: Coordinator-based
	Existing architectures
	Existing architectures
	NetMC: Network-accelerated multiget coordination
	Technical challenges 
	NetMC architecture
	Multiget request generation at clients
	Request splitting at switch data plane 
	Request splitting at switch data plane 
	Request splitting at switch data plane 
	Request splitting at switch data plane 
	Reply aggregation at clients 
	Evaluation
	Throughput vs. skewness
	Latency vs. throughput
	Application: Redis
	Scalability
	Impact of multiget size
	Impact of value size 
	Conclusion
	슬라이드 번호 28

