
In-Network Leaderless Replication for
Distributed Data Stores

Gyuyeong Kim* and Wonjun Lee

Network and Security Research Lab.

School of Cybersecurity

Korea University

*Currently at Sungshin Women’s University

VLDB 2022, Sydney, Australia, September 2022

1

Distributed Data Stores

• Backbone for modern online services

• NoSQL key-value databases (e.g., Redis, Memcached)

2

data stores

Key Value

Key1 Value1

Key2 Value2

Key3 Value3

Data Replication 101

3

Leader Followers
① Write

④ Commit

• A common technique to mask failures

• Leader-follower structure

② Update

③ ACK

Client

Leader-based Replication

• Easy to ensure strong consistency

• Leader becomes the performance bottleneck

• Downtime due to leader election and membership changes

4

Leader
(head)

Writes

Chain Replication (CR)@OSDI’04

Leader
(tail)

Reads Replies

Only head/tail leader handle requests

Leaderless Replication - Pros

• Scalable read performance by local reads

• No downtime for leader election

5

Reads/Writes

Hermes@ASPLOS’20

Every replica can serve reads/writes

Leaderless Replication - Cons

• Extra coordination to ensure strong consistency
• Read-write conflicts: read access to an inconsistent object

• Inter-write conflicts: concurrent writes for the same object

• Still requires coordination to propagate membership changes

6
Write coordination with Hermes@ASPLOS’20

Leader-based vs. Leaderless

How to achieve high performance, strong consistency,
and fault tolerance simultaneously?

7

Leader-based protocol Leaderless protocol

Strong consistency O O

[High perf.] Read scalability X O

[High perf.] No inter-replica coordination for writes X X

[Fault tolerance] No leader election X O

[Fault tolerance] No coordination for membership changes X X

A Case for In-Network Replication

• Let’s move the entire replication
functions into the network!

• Emerging programmable switches
• High performance

• High Flexibility

8

Programmable switch with Intel Tofino ASIC

Why In-Network Replication?

• Global view: every message passes through the ToR switch

• Centralized point: the coordination overhead is due to distributed
object/server state management

9

Read(A)

Read(B)

Read(C)

Write(D=5)

Programmable Switch Architecture

• Switch ASICs like Intel Tofino allow us to program the data plane in P4
• Programmable parser to identify replication messages

• Stateful memory to maintain object and server states

• Programmable packet processing logic to perform replication functions

10

NetLR: In-network Replication Coordinator

• NetLR directly performs data replication in the network
• No inter-replica coordination for strongly-consistent writes and membership changes

• Consistency-aware read scheduling
• Forwards requests to consistent replicas only
• Maintains inconsistent object list

• High-performance write coordination
• Clones write requests
• Aggregates replies and commits the write

• Active fault adaptation
• Centralized membership management
• Maintains the liveness state of servers
• Periodic polling to the port status

11

Packet Format

12

• OP: operation type

• ID: object ID (key)

• SEQ: request sequence number

ETH IP UDP OP ID SEQ Payload

NetLR Header

READ, WRITE, etc.
Reserved

port #
L2/L3 Routing

Existing Protocols

Read Processing for Consistent Objects

13

Can forward to any replica since all the replicas have the newest data

Replica 1

Replica 2

Replica 3

Client

Switch

Sequence number = 9 Read
(Obj ID=B)

1

4

Request

Reply

Obj ID Last written
seq. number

Latest known
consistent

replica

of consistent
replica

A 8 2 2

C 9 3 1

2

3

2

3

3

2

Object B is not in the list

or

or

Read Processing for Inconsistent Objects

14

Can forward to the latest known consistent replica only

Replica 1

Replica 2

Replica 3

Client

Switch

Sequence number = 9 Read
(Obj ID=C)

1

2
4

3

Obj ID Last written
seq. number

Latest known
consistent

replica

of consistent
replica

A 8 2 2

C 9 3 1

Object C is in the list

Write Processing

15

Replica 1

Replica 2

Replica 3

Client

Switch

Sequence number = 9Write
(Obj ID=G) Obj ID Last written

seq. number

Latest known
consistent

replica

of consistent
replica

A 8 2 2

C 9 3 1

G 10G 10 1 1G 10 2 2

Write Processing

16

Replica 1

Replica 2

Replica 3

Client

Switch

Sequence number = 10Write
(Obj ID=G)

1

2

Obj ID Last written
seq. number

Latest known
consistent

replica

of consistent
replica

A 8 2 2

C 9 3 1

G 10

Write Processing

17

Replica 1

Replica 2

Replica 3

Client

Switch

Sequence number = 10Write
(Obj ID=G)

1

2

3
Obj ID Last written

seq. number

Latest known
consistent

replica

of consistent
replica

A 8 2 2

C 9 3 1

G 10G 10 1 1

Write Processing

18

Replica 1

Replica 2

Replica 3

Client

Switch

Sequence number = 10Write
(Obj ID=G)

1

2

3
Obj ID Last written

seq. number

Latest known
consistent

replica

of consistent
replica

A 8 2 2

C 9 3 1

G 10G 10 2 2

Write Processing

19

Replica 1

Replica 2

Replica 3

Client

Switch

Sequence number = 10Write
(Obj ID=G)

1

2

3
Obj ID Last written

seq. number

Latest known
consistent

replica

of consistent
replica

A 8 2 2

C 9 3 14

G 10G 10 1 1G 10 2 2

Data Plane Implementation

• 5 pipeline M-A stages and 5.68% of switch memory usage

• Multiple register arrays for inconsistent object list
• Uses hash for indexing to minimize memory usage

• Objects exist temporarily only during write coordination

20

Evaluation

• Testbed setup
• Edgecore Wedge100BF-32X switch with 3.2 Tbps Intel Tofino ASIC
• 7 commodity servers with a 6-core CPU and 40GbE NIC

• 6 of the servers are storage servers
• One server acts as two clients with a dual-port NIC

• Comparison
• CR@OSDI’04 (Represents leader-based protocol)
• Hermes@ASPLOS’20 (Represents leaderless protocol)
• Harmonia@VLDB’20 (in-network read-write conflict detection)

• Default workload
• Two clients and four replicas
• Read-heavy workload with 95:5 read:write ratio
• 1M objects

21

Throughput vs. Latency

22

NetLR improves throughput by up to 3.21x and 1.17x compared with CR and Hermes

Median 99th Percentile

Scalability

23

NetLR provides near-linear scalability and is robust to the dataset size

Impact of number of replicas Impact of dataset size

Performance under Failures

24

NetLR is robust to server and switch failures

Server failures Switch failures

Impact of switch memory size

25

NetLR requires only 128K hash slots (≈5.68% of switch memory)
to achieve maximum write throughput

Comparison to Harmonia

26

NetLR has better tail latency than Harmonia by 2.03x on average

Throughput vs. 99th percentile latency Impact of write ratios on 99th percentile latency

Conclusion

27

• NetLR is a new replicated data store architecture
• High throughput and low latency

• Strong consistency

• Fault tolerance

• In-network leaderless replication
• Leverages the flexibility and capability of programmable switches

• Emerging programmable switches have great potential to accelerate
data stores

28

Thank you!

