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Distributed Data Stores

• Backbone for modern online services

• NoSQL key-value databases (e.g., Redis, Memcached)
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Data Replication 101
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Leader Followers
① Write

④ Commit

• A common technique to mask failures

• Leader-follower structure

② Update

③ ACK

Client



Leader-based Replication

• Easy to ensure strong consistency

• Leader becomes the performance bottleneck

• Downtime due to leader election and membership changes
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Leader
(head)

Writes

Chain Replication (CR)@OSDI’04

Leader
(tail)

Reads Replies

Only head/tail leader handle requests



Leaderless Replication - Pros

• Scalable read performance by local reads

• No downtime for leader election
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Reads/Writes

Hermes@ASPLOS’20

Every replica can serve reads/writes



Leaderless Replication - Cons

• Extra coordination to ensure strong consistency
• Read-write conflicts: read access to an inconsistent object

• Inter-write conflicts: concurrent writes for the same object

• Still requires coordination to propagate membership changes
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Write coordination with Hermes@ASPLOS’20



Leader-based vs. Leaderless

How to achieve high performance, strong consistency, 
and fault tolerance simultaneously?
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Leader-based protocol Leaderless protocol

Strong consistency O O

[High perf.] Read scalability X O

[High perf.] No inter-replica coordination for writes X X

[Fault tolerance] No leader election X O

[Fault tolerance] No coordination for membership changes X X



A Case for In-Network Replication

• Let’s move the entire replication 
functions into the network!

• Emerging programmable switches
• High performance

• High Flexibility
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Programmable switch with Intel Tofino ASIC



Why In-Network Replication?

• Global view: every message passes through the ToR switch

• Centralized point: the coordination overhead is due to distributed 
object/server state management
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Read(A)

Read(B)

Read(C)

Write(D=5)



Programmable Switch Architecture

• Switch ASICs like Intel Tofino allow us to program the data plane in P4
• Programmable parser to identify replication messages

• Stateful memory to maintain object and server states

• Programmable packet processing logic to perform replication functions
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NetLR: In-network Replication Coordinator

• NetLR directly performs data replication in the network
• No inter-replica coordination for strongly-consistent writes and membership changes

• Consistency-aware read scheduling
• Forwards requests to consistent replicas only 
• Maintains inconsistent object list

• High-performance write coordination
• Clones write requests
• Aggregates replies and commits the write

• Active fault adaptation
• Centralized membership management
• Maintains the liveness state of servers
• Periodic polling to the port status

11



Packet Format
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• OP: operation type

• ID: object ID (key)

• SEQ: request sequence number

ETH                              IP UDP OP ID SEQ Payload

NetLR Header

READ, WRITE, etc.
Reserved 

port #
L2/L3 Routing

Existing Protocols



Read Processing for Consistent Objects
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Can forward to any replica since all the replicas have the newest data

Replica 1

Replica 2

Replica 3

Client

Switch

Sequence number = 9 Read
(Obj ID=B)

1

4

Request

Reply

Obj ID Last written 
seq. number

Latest known 
consistent 

replica

# of consistent 
replica

A 8 2 2

C 9 3 1

2

3

2

3

3

2

Object B is not in the list

or

or



Read Processing for Inconsistent Objects
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Can forward to the latest known consistent replica only

Replica 1

Replica 2

Replica 3

Client

Switch

Sequence number = 9 Read
(Obj ID=C)

1

2
4

3

Obj ID Last written 
seq. number

Latest known 
consistent 

replica

# of consistent 
replica

A 8 2 2

C 9 3 1

Object C is in the list



Write Processing
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Replica 1

Replica 2

Replica 3

Client

Switch

Sequence number = 9Write
(Obj ID=G) Obj ID Last written 

seq. number

Latest known 
consistent 

replica

# of consistent 
replica

A 8 2 2

C 9 3 1

G 10G 10 1 1G 10 2 2



Write Processing
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Replica 1

Replica 2

Replica 3

Client

Switch

Sequence number = 10Write
(Obj ID=G)

1

2

Obj ID Last written 
seq. number

Latest known 
consistent 

replica

# of consistent 
replica

A 8 2 2

C 9 3 1

G 10



Write Processing
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Replica 1

Replica 2

Replica 3

Client

Switch

Sequence number = 10Write
(Obj ID=G)

1

2

3
Obj ID Last written 

seq. number

Latest known 
consistent 

replica

# of consistent 
replica

A 8 2 2

C 9 3 1

G 10G 10 1 1



Write Processing
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Replica 1

Replica 2

Replica 3

Client

Switch

Sequence number = 10Write
(Obj ID=G)

1

2

3
Obj ID Last written 

seq. number

Latest known 
consistent 

replica

# of consistent 
replica

A 8 2 2

C 9 3 1

G 10G 10 2 2



Write Processing
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Replica 1

Replica 2

Replica 3

Client

Switch

Sequence number = 10Write
(Obj ID=G)

1

2

3
Obj ID Last written 

seq. number

Latest known 
consistent 

replica

# of consistent 
replica

A 8 2 2

C 9 3 14

G 10G 10 1 1G 10 2 2



Data Plane Implementation

• 5 pipeline M-A stages and 5.68% of switch memory usage

• Multiple register arrays for inconsistent object list 
• Uses hash for indexing to minimize memory usage

• Objects exist temporarily only during write coordination
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Evaluation

• Testbed setup
• Edgecore Wedge100BF-32X switch with 3.2 Tbps Intel Tofino ASIC
• 7 commodity servers with a 6-core CPU and 40GbE NIC

• 6 of the servers are storage servers
• One server acts as two clients with a dual-port NIC

• Comparison
• CR@OSDI’04 (Represents leader-based protocol)
• Hermes@ASPLOS’20 (Represents leaderless protocol)
• Harmonia@VLDB’20 (in-network read-write conflict detection)

• Default workload
• Two clients and four replicas
• Read-heavy workload with 95:5 read:write ratio
• 1M objects
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Throughput vs. Latency
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NetLR improves throughput by up to 3.21x and 1.17x compared with CR and Hermes

Median 99th Percentile



Scalability
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NetLR provides near-linear scalability and is robust to the dataset size

Impact of number of replicas Impact of dataset size



Performance under Failures
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NetLR is robust to server and switch failures

Server failures Switch failures



Impact of switch memory size
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NetLR requires only 128K hash slots (≈5.68% of switch memory) 
to achieve maximum write throughput



Comparison to Harmonia
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NetLR has better tail latency than Harmonia by 2.03x on average

Throughput vs. 99th percentile latency Impact of write ratios on 99th percentile latency



Conclusion

27

• NetLR is a new replicated data store architecture
• High throughput and low latency

• Strong consistency

• Fault tolerance

• In-network leaderless replication
• Leverages the flexibility and capability of programmable switches

• Emerging programmable switches have great potential to accelerate 
data stores
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Thank you!


