In-Network Leaderless Replication for
Distributed Data Stores

VLDB 2022, Sydney, Australia, September 2022

Gyuyeong Kim* and Wonjun Lee
Network and Security Research Lab.
School of Cybersecurity

Korea University

s KOREA

UNIVERSITY

tLab

etwork and Security Research Lab.

*Currently at Sungshin Women’s University

Distributed Data Stores

 Backbone for modern online services

 NoSQL key-value databases (e.g., Redis, Memcached)

Key Value
Keyl Valuel
Key?2 Value2

g og é

data stores

Data Replication 101

A common technique to mask failures
e | eader-follower structure

Client Leader %) Update Followers

- — Eﬁ@@

@ Commit (3 ACK

—

Leader-based Replication

@ Easy to ensure strong consistency
& Leader becomes the performance bottleneck
& Downtime due to leader election and membership changes

Writes Reads \ /Replles

Leader Leader
(head) (tail)
Only head/tail leader handle requests

Chain Replication (CR)@0SDI'04

Leaderless Replication - Pros

&y Scalable read performance by local reads

) No downtime for leader election

Reads/Writes

Every replica can serve reads/writes

Hermes@ASPLOS’20

Leaderless Replication - Cons

(o Extra coordination to ensure strong consistency
* Read-write conflicts: read access to an inconsistent object
* Inter-write conflicts: concurrent writes for the same object

&) Still requires coordination to propagate membership changes

Replica 3
Write coordination with Hermes@ASPLOS’20

Leader-based vs. Leaderless

Leader-based protocol Leaderless protocol

Strong consistency O @)

[High perf.] Read scalability

High perf.] No inter-replica coordination for writes

X | X | X | X
< O X |O

[
[Fault tolerance] No leader election
[

Fault tolerance] No coordination for membership changes

How to achieve high performance, strong con5|stency,
and fault tolerance simultaneously? 4 .

A Case for In-Network Replication

e Let’s move the entire replication e
functions into the network!

* Emerging programmable switches

* High performance
* High Flexibility

% . A - n i B By B 2 1% 1% : PR i v f
b 0 b b P e PP O 0 PP SO B0 O PO T PO OO O PN N
|]

Programmable switch with Intel Tofino ASIC

Why In-Network Replication?

* Global view: every message passes through the ToR switch

* Centralized point: the coordination overhead is due to distributed
object/server state management

Programmable Switch Architecture

* Switch ASICs like Intel Tofino allow us to program the data plane in P4
* Programmable parser to identify replication messages
* Stateful memory to maintain object and server states
* Programmable packet processing logic to perform replication functions

Control Plane { AL
Memory Multicore |
)

(DRAM) x86 CPU

‘: PCle Interface
B Memory (TCAM/SRAM)
[AlU Programmable l\/latch;Action (M-A) Pipeline

s A

D D s e
. &

N =

. _’ _’ _’
B
D e

Parser M-AStage M-AStage M-AStage M-AStage Deparser

| SSD

Data Plane

ITTTTIII
HERE
[VAVAVAY,

HUREN

[VAVAVAVAY

HENEN

[VAVAVAVAV/

fii

NetLR: In-network Replication Coordinator

* NetLR directly performs data replication in the network
* No inter-replica coordination for strongly-consistent writes and membership changes

e Consistency-aware read scheduling

* Forwards requests to consistent replicas only (e)
* Maintains inconsistent object list Replicated Storage Rack
* High-performance write coordination Switch Switch Active Fault
. Control Plane Management Adaptation
* Clones write requests
* Aggregates replies and commits the write 12/13 | [consistency-Aware | [High-Performance
. . Routing Read Scheduling Write Coordination
* Active fault adaptation Switch Data Plane
e Centralized membership management | |]
* Maintains the liveness state of servers U Ej D U U U
Storage Servers

* Periodic polling to the port status

Packet Format

Existing Protocols

\

NetLR Header
A

OP ID SEQ

N

|
12/L3 Routing | heserved
port #

}{ READ, WRITE, etc.]

* OP: operation type
* |ID: object ID (key)
* SEQ: request sequence number

12

Read Processing for Consistent Objects

Read
(Obj ID=B)

_

Client

—> Request
<— Reply

/ Sequence humber =9

~

Last written

Latest known

of consistent

ObJ ID seq. number corr:)i;teant replica
A 3 2 2
C 9 3 1

2

]

or Replica 1

2

Switch

>

v\orARephca 2

Replica 3

Can forward to any replica since all the replicas have the newest data

13

Read Processing for Inconsistent Objects

Read

(Obj 1D=C)

[

]

Client

1

—
e__

/ Sequence number =9 \

Obj ID

Last written

Latest known
consistent

of consistent

seq. number il replica
A 3 2 2
C 9 3 1

\Z _/

Switch

AN

]

Replica 1

]

Replica 2

]

Replica 3

Can forward to the latest known consistent replica only

14

Write Processing

Write

(Obj ID=G)

[

]

Client

/ Sequence number =9 \

Latest known

Obj ID S":St r\:‘;rri‘:t;:r consistent # ol Cor;.s Istent
9 replica fe2lEE
A 8 2 2
C) 3 1

2

/

Switch

]

Replica 1

a

Replica 2

]

Replica 3

15

Write Processing

Write
(Obj ID=G)
1
_
Client

/ Sequence number = 10 \

Latest known

. Last written # of consistent
Obi ID consistent)
J seq. number il replica
A 3 2 2
C 9 3 1
G 10

Z/G

Replica 1

2

/

Switch

Repllca 2

Rephca 3

16

Write Processing

Write
(Obj ID=G)
1
_
Client

/ Sequence number = 10 \

. Latest known .
Obj ID S":St rmrrlwitt?:r consistent # ol Cor;.s Istent
9 replica e
A 8 2 2
C 9 3 1
G 10 1 1

gz

2

/

Switch

>

]

Replica 1

]

Replica 2

]

Replica 3

Write Processing

Write
(Obj ID=G)
1
_
Client

/ Sequence number = 10 \

. Latest known .
Obj ID S":St rmrrlwitt?:r consistent # ol Cor;.s Istent
9 replica e
A 8 2 2
C 9 3 1
G 10 2 P

2

/

Switch

gz

>

]

Replica 1

]

Replica 2

]

Replica 3

18

Write Processing

Write
(Obj ID=G)

)

Client

/ Sequence number = 10 \

Latest known

Obj ID SL:St rmrri\:tt?:r consistent # ol Cor;.s Istent
9 replica fe2lEE
A 8 2 2
C) 3 1

2

/

Switch

gz

<€

>

\

]

Replica 1

]

Replica 2

]

Replica 3

19

Data Plane Implementation

* 5 pipeline M-A stages and 5.68% of switch memory usage

* Multiple register arrays for inconsistent object list
* Uses hash for indexing to minimize memory usage
* Objects exist temporarily only during write coordination

Obj ID | Last written Latest known # of consistent
seq. num. consistent replica replicas
Insertion A ’) 1 3

& Search

6 0 1

C

R(©) 1 h(E) Deletion

20

Evaluation

e Testbed setup
e Edgecore Wedgel0O0OBF-32X switch with 3.2 Tbps Intel Tofino ASIC
e 7 commodity servers with a 6-core CPU and 40GbE NIC

* 6 of the servers are storage servers
* One server acts as two clients with a dual-port NIC

* Comparison
e CR@OSDI'04 (Represents leader-based protocol)
* Hermes@ASPLOS’ 20 (Represents leaderless protocol)
 Harmonia@VLDB’20 (in-network read-write conflict detection)

* Default workload
e Two clients and four replicas
e Read-heavy workload with 95:5 read:write ratio
* 1M objects

Throughput vs. Latency

| . 60
5 -8-CR
D ® = Hermes l D
£ ~-NetLR £40}
>10 - >
&) &)
3 &
T 5. = 20
1 1
0 MOLOEQEF 0——0" 0— ' ' '
0 20 40 60 80 0 20 40 60
Throughput (KRPS) Throughput (KRPS)
Median 99" Percentile

NetLR improves throughput by up to 3.21x and 1.17x compared with CR and Hermes

22

Scalability

100 \ BCR
-=-CR 80 I Hermes
~-4—-Hermes
-0-NetLR 60

Throughput (KRPS)
S
o

Throughput (KRPS)
o
o

- 20
0 | 0
1 2 3 4) 6 1M SM 10M 100M
Number of Replicas Dataset Size (Number of Objects)
Impact of number of replicas Impact of dataset size

NetLR provides near-linear scalability and is robust to the dataset size

23

N
(@]

—
(63

Throughput (KRPS)
o o

Performance under Failures

e} o

| |

|

1

\
‘f---ﬁI“‘

—==Ww/0 Fault Adaptation
-/ Fault Adaptation

c 50

S—

+— 40

Iﬁ-—--—---‘ c 30

' S 20
T, Sy,] f—
1 L

=10
| L

2 4

6 8 10

Time (second)

Server failures

Reactivate[switch

/ .

HWMW &~ Stop switch WM

8

12

16 20 24 28 32
Time (second)

Switch failures

NetLR is robust to server and switch failures

36

24

40

Impact of switch memory size

18 ' T ' L B B | ' 1
616- -1 Client 9
D_ .
E 2 Clients
:14- 1
-
&
o> 12 ¢ 1
-
o
|E 10"_/_’1/ |
8 i |

2048 4096 8192 16384 32768 65536 131072
Hash Table Size (Log)

NetLR requires only 128K hash slots (=5.68% of switch memory)
to achieve maximum write throughput

25

Comparison to Harmonia

40 80
UE'J 30+ é 60 -
& 20 ?
2 240
1 10+ —
[
. 20 | | | |
15 20 25 30 35 40 45 50 55 60 65 20 40 60 80 100
Write Ratio (%)

Throughput (KRPS)
Throughput vs. 99th percentile latency Impact of write ratios on 99t" percentile latency

NetLR has better tail latency than Harmonia by 2.03x on average

26

Conclusion

* NetLR is a new replicated data store architecture
* High throughput and low latency
* Strong consistency
* Fault tolerance

* In-network leaderless replication
* Leverages the flexibility and capability of programmable switches

* Emerging programmable switches have great potential to accelerate
data stores

Thank you!

