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Distributed Data Stores

 Backbone for modern online services

 NoSQL key-value databases (e.g., Redis, Memcached)
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Data Replication 101

A common technique to mask failures
e | eader-follower structure
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Leader-based Replication

@ Easy to ensure strong consistency
& Leader becomes the performance bottleneck
& Downtime due to leader election and membership changes

Writes Reads \ /Replles

Leader Leader
(head) (tail)
Only head/tail leader handle requests

Chain Replication (CR)@0SDI'04




Leaderless Replication - Pros

&y Scalable read performance by local reads

) No downtime for leader election

Reads/Writes

Every replica can serve reads/writes

Hermes@ASPLOS’20



Leaderless Replication - Cons

(o Extra coordination to ensure strong consistency
* Read-write conflicts: read access to an inconsistent object
* Inter-write conflicts: concurrent writes for the same object

&) Still requires coordination to propagate membership changes

Replica 3
Write coordination with Hermes@ASPLOS’20



Leader-based vs. Leaderless

Leader-based protocol Leaderless protocol

Strong consistency O @)

[High perf.] Read scalability

High perf.] No inter-replica coordination for writes
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[Fault tolerance] No leader election
[

Fault tolerance] No coordination for membership changes

How to achieve high performance, strong con5|stency,
and fault tolerance simultaneously? 4 .




A Case for In-Network Replication

e Let’s move the entire replication e
functions into the network!

* Emerging programmable switches

* High performance
* High Flexibility
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Programmable switch with Intel Tofino ASIC



Why In-Network Replication?

* Global view: every message passes through the ToR switch

* Centralized point: the coordination overhead is due to distributed
object/server state management




Programmable Switch Architecture

* Switch ASICs like Intel Tofino allow us to program the data plane in P4
* Programmable parser to identify replication messages
* Stateful memory to maintain object and server states
* Programmable packet processing logic to perform replication functions
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NetLR: In-network Replication Coordinator

* NetLR directly performs data replication in the network
* No inter-replica coordination for strongly-consistent writes and membership changes

e Consistency-aware read scheduling

* Forwards requests to consistent replicas only (e )
* Maintains inconsistent object list Replicated Storage Rack
* High-performance write coordination Switch Switch Active Fault
. Control Plane Management Adaptation
* Clones write requests
* Aggregates replies and commits the write 12/13 | [ consistency-Aware | [ High-Performance
. . Routing Read Scheduling Write Coordination
* Active fault adaptation Switch Data Plane
e Centralized membership management | | ]
* Maintains the liveness state of servers U Ej D U U U
Storage Servers

* Periodic polling to the port status



Packet Format

Existing Protocols

\

NetLR Header
A

OP ID SEQ

N

|
12/L3 Routing | heserved
port #

}{ READ, WRITE, etc. ]

* OP: operation type
* |ID: object ID (key)
* SEQ: request sequence number

12



Read Processing for Consistent Objects

Read
(Obj ID=B)

_

Client

—> Request
<— Reply

/ Sequence humber =9

~

Last written

Latest known

# of consistent

ObJ ID seq. number corr:)i;teant replica
A 3 2 2
C 9 3 1

2

]

or Replica 1

2

Switch

>

v\orARephca 2

Replica 3

Can forward to any replica since all the replicas have the newest data
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Read Processing for Inconsistent Objects

Read

(Obj 1D=C)
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# of consistent
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Can forward to the latest known consistent replica only
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Write Processing

Write

(Obj ID=G)
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Write Processing

Write
(Obj ID=G)
1
_
Client

/ Sequence number = 10 \

Latest known

. Last written # of consistent
Obi ID consistent )
J seq. number il replica
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C 9 3 1
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Write Processing

Write
(Obj ID=G)
1
_
Client

/ Sequence number = 10 \

. Latest known .
Obj ID S":St rmrrlwitt?:r consistent # ol Cor;.s Istent
9 replica e
A 8 2 2
C 9 3 1
G 10 1 1

gz

2

/

Switch

>

]

Replica 1

]

Replica 2

]

Replica 3



Write Processing

Write
(Obj ID=G)
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Write Processing

Write
(Obj ID=G)
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Data Plane Implementation

* 5 pipeline M-A stages and 5.68% of switch memory usage

* Multiple register arrays for inconsistent object list
* Uses hash for indexing to minimize memory usage
* Objects exist temporarily only during write coordination

Obj ID | Last written Latest known # of consistent
seq. num. consistent replica replicas
Insertion A ’) 1 3

& Search

6 0 1

C

R(©) 1 h(E) Deletion
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Evaluation

e Testbed setup
e Edgecore Wedgel0O0OBF-32X switch with 3.2 Tbps Intel Tofino ASIC
e 7 commodity servers with a 6-core CPU and 40GbE NIC

* 6 of the servers are storage servers
* One server acts as two clients with a dual-port NIC

* Comparison
e CR@OSDI'04 (Represents leader-based protocol)
* Hermes@ASPLOS’ 20 (Represents leaderless protocol)
 Harmonia@VLDB’20 (in-network read-write conflict detection)

* Default workload
e Two clients and four replicas
e Read-heavy workload with 95:5 read:write ratio
* 1M objects



Throughput vs. Latency
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NetLR improves throughput by up to 3.21x and 1.17x compared with CR and Hermes
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Scalability
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NetLR provides near-linear scalability and is robust to the dataset size
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Impact of switch memory size
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NetLR requires only 128K hash slots (=5.68% of switch memory)
to achieve maximum write throughput
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Comparison to Harmonia
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NetLR has better tail latency than Harmonia by 2.03x on average
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Conclusion

* NetLR is a new replicated data store architecture
* High throughput and low latency
* Strong consistency
* Fault tolerance

* In-network leaderless replication
* Leverages the flexibility and capability of programmable switches

* Emerging programmable switches have great potential to accelerate
data stores



Thank you!



