
NetClone: Fast, Scalable, and Dynamic
Request Cloning for Microsecond-Scale RPCs

Gyuyeong Kim

1



Microsecond-scale RPCs

• Microservice components interact via RPCs

• The RPC is getting smaller and shorter
• 75% of requests are < 512B, 90% of responses < 64B* 

• e.g., ~ 20 μs to access key-value stores

• We need microsecond-scale tail latency for better user experience

2
*Y. Gan et al., "An Open-Source Benchmark Suite for Microservices and Their Hardware-Software Implications for Cloud and Edge Systems," in Proc. of ACM ASPLOS, 2019.



Service-time Variability

• RPC requests may experience unexpected latency variability

• Hard to eliminate because sources are diverse
• Load fluctuation, background tasks, OS scheduling, garbage collection, …

3

25 μs 

20 μs 

27 μs 

383 μs …



Request Cloning to Mask Variability

• Client sends duplicate requests and takes the faster response
• Client-side Cloning (C-Clone) [CoNEXT’13]*

4

…

Client

Faster resp.

(50 μs)

Slower resp.

(200 μs)

*Ashish Vulimiri, Philip Brighten Godfrey, Radhika Mittal, Justine Sherry, Sylvia Ratnasamy, and Scott Shenker, “Low Latency via Redundancy,” in Proc. of ACM CoNEXT, 2013.



Request Cloning to Mask Variability

• Client sends duplicate requests and takes the faster response
• Client-side Cloning (C-Clone) [CoNEXT’13]*

• Static cloning: only beneficial within a sweet spot

5*Ashish Vulimiri, Philip Brighten Godfrey, Radhika Mittal, Justine Sherry, Sylvia Ratnasamy, and Scott Shenker, “Low Latency via Redundancy,” in Proc. of ACM CoNEXT, 2013.

Baseline

(No Cloning)

Throughput

Latency

C-Clone

Sweet spot



Coordinator-based Cloning 

• A coordinator performs cloning decisions
• LÆDGE [NSDI’21]*

• Dynamic cloning with load-awareness
• Clones requests only if at least two servers are idle

• No sweet spot

6

Servers

Switch

…

ClientClient

Coordinator

Not enough to serve microsecond-scale workloads

*Mia Primorac, Katerina Argyraki, and Edouard Bugnion, “When to Hedge in Interactive Services,” in Proc. of USENIX NSDI, 2021.



#1 Latency overhead for cloning decisions

• As the runtime decreases, the portion of overhead increases

• Even a small overhead can increase latency excessively

7

Processing Cloning

Latency 



#2 Limited Scalability of CPUs

• The coordinator uses the CPU for request handling

• Limited packet processing performance

• Multiple coordinators to scale out
• Costs to build and maintain a tier of coordinators

8

…

ClientClients

…



The Case for In-Network Cloning

• Q: How can we perform dynamic request cloning quickly at scale?

• A: NetClone: switch-based dynamic request cloning

9
Client-based (C-Clone) Coordinator-based (LÆ DGE) Switch-based (NetClone)



Why In-Network Cloning?

• High performance
• Can process a few billion packets per second

• Can process a packet in hundreds of nanoseconds

• High flexibility
• We can customize the switch data plane thanks to the programmable switch 

ASIC like Intel Tofino

10Programmable switch



Requirements and Challenges

• Requirements achieved by using the switch
• Scalability: Tbps-scale packet processing throughput

• Low latency: cloning decisions in a nanosecond-scale

• No sweet spot: dynamic request cloning in the switch

• Strict hardware recourse constraints
• Limited memory space

• Limited computational capability

11

Design the custom switch data plane 

by addressing technical challenges



NetClone Architecture

• Request cloning module
• Clones requests only if the two selected 

servers are idle

• Response filtering module
• Drops the slower response to reduce client-

side overhead

• State tracking module
• Keep track server states

• Custom header
• Support NetClone functionality

12



Dynamic Request Cloning

• Step 1: gets the IDs of two candidate servers

• Step 2: sets the dest. IP address to server 1

13

Client

GrpTable

Servers

Read

ToR Switch

AddrTable

Read



Dynamic Request Cloning

• Step 3: read the state of server 1

• Step 4: read the state of server 2

• Step 5 (If any server is busy): no cloning

14

GrpTable

Servers

Read

Original

ToR Switch

StateTable

Read

ShadowTable

Read

AddrTable

Read

Client



Dynamic Request Cloning

• Step 5 (If both servers are idle) – Clone the request
• Forward the original request to server 1

• Recirculate the cloned request 

• Step 6: update the dest. IP address of the clone to server 2

15

GrpTable

Servers

Read

AddrTable

Read

StateTable

Read

ShadowTable

Read

Clone

Original

ToR Switch
Client



Response Processing
• Step 1: update server states (responses carry server states)

• Step 2: Checks the filter table
• No matched ID exists: put request ID into the filter table (Faster response)

• Matched ID exists: drop the response (Slower response)

16

Client ServersToR Switch

StateTable

Update

ShadowTable

UpdateInsert

FilterTable

Remove



Evaluation

• Implementation
• 6.5Tbps Intel Tofino switch ASICs

• Open-loop multi-threaded applications

• Testbed
• 6.5Tbps Intel Tofino switch

• 8 servers with Nvidia ConnectX-5 100G NIC

• Workloads
• Synthetic workload: exponential and bimodal distributions with dummy RPCs 

• Key-value stores with zipf-0.99

17



Throughput vs. Latency

18

NetClone provides lower tail latency and maintains high throughput

Dynamic cloning



Comparison with LÆ DGE

19

NetClone provies better performance than LÆ DGE

No latency 
overhead



Application: Redis

20

NetClone improves the performance of real-world applications



Impact of Redundant Response Filtering

21

Response filtering reduces client-side overhead



Conclusion

• Microsecond-scale RPCs require microsecond-scale tail latency

• NetClone is a request cloning mechanism that performs fast, scalable, and 
dynamic request cloning by leveraging programmable switches

• Programmable switches can play a critical role in the era of microseconds!

22



23

Thank you!

Contact: gykim@sungshin.ac.kr

Questions?

https://github.com/GyuyeongKim/NetClone-public

NetClone prototype code is available at: 

https://github.com/GyuyeongKim/NetClone-public


24

Appendix



Performance with RackSched [OSDI’20]

25

NetClone can be integrated with an in-network request scheduler

Exponential distribution Bimodal distribution

Cloning in 

NetClone

Load balancing in RackSched

Hang Zhu, Kostis Kaffes, Zixu Chen, Zhenming Liu, Christos Kozyrakis, Ion Stoica, and Xin Jin, "RackSched: A Microsecond-Scale Scheduler for Rack-Scale Computers," in Proc. of USENIX ODSI, 2020.


	슬라이드 1: NetClone: Fast, Scalable, and Dynamic Request Cloning for Microsecond-Scale RPCs
	슬라이드 2: Microsecond-scale RPCs
	슬라이드 3: Service-time Variability
	슬라이드 4: Request Cloning to Mask Variability
	슬라이드 5: Request Cloning to Mask Variability
	슬라이드 6: Coordinator-based Cloning 
	슬라이드 7: #1 Latency overhead for cloning decisions
	슬라이드 8: #2 Limited Scalability of CPUs
	슬라이드 9: The Case for In-Network Cloning
	슬라이드 10: Why In-Network Cloning?
	슬라이드 11: Requirements and Challenges
	슬라이드 12: NetClone Architecture
	슬라이드 13: Dynamic Request Cloning
	슬라이드 14: Dynamic Request Cloning
	슬라이드 15: Dynamic Request Cloning
	슬라이드 16: Response Processing
	슬라이드 17: Evaluation
	슬라이드 18: Throughput vs. Latency
	슬라이드 19: Comparison with LÆDGE
	슬라이드 20: Application: Redis
	슬라이드 21: Impact of Redundant Response Filtering
	슬라이드 22: Conclusion
	슬라이드 23
	슬라이드 24
	슬라이드 25: Performance with RackSched [OSDI’20]

