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Microsecond-scale RPCs

• Microservice components interact via RPCs

• The RPC is getting smaller and shorter
• 75% of requests are < 512B, 90% of responses < 64B* 

• e.g., ~ 20 μs to access key-value stores

• We need microsecond-scale tail latency for better user experience
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*Y. Gan et al., "An Open-Source Benchmark Suite for Microservices and Their Hardware-Software Implications for Cloud and Edge Systems," in Proc. of ACM ASPLOS, 2019.



Service-time Variability

• RPC requests may experience unexpected latency variability

• Hard to eliminate because sources are diverse
• Load fluctuation, background tasks, OS scheduling, garbage collection, …
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Request Cloning to Mask Variability

• Client sends duplicate requests and takes the faster response
• Client-side Cloning (C-Clone) [CoNEXT’13]*
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…
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(50 μs)

Slower resp.
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*Ashish Vulimiri, Philip Brighten Godfrey, Radhika Mittal, Justine Sherry, Sylvia Ratnasamy, and Scott Shenker, “Low Latency via Redundancy,” in Proc. of ACM CoNEXT, 2013.



Request Cloning to Mask Variability

• Client sends duplicate requests and takes the faster response
• Client-side Cloning (C-Clone) [CoNEXT’13]*

• Static cloning: only beneficial within a sweet spot

5*Ashish Vulimiri, Philip Brighten Godfrey, Radhika Mittal, Justine Sherry, Sylvia Ratnasamy, and Scott Shenker, “Low Latency via Redundancy,” in Proc. of ACM CoNEXT, 2013.
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Coordinator-based Cloning 

• A coordinator performs cloning decisions
• LÆDGE [NSDI’21]*

• Dynamic cloning with load-awareness
• Clones requests only if at least two servers are idle

• No sweet spot
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Not enough to serve microsecond-scale workloads

*Mia Primorac, Katerina Argyraki, and Edouard Bugnion, “When to Hedge in Interactive Services,” in Proc. of USENIX NSDI, 2021.



#1 Latency overhead for cloning decisions

• As the runtime decreases, the portion of overhead increases

• Even a small overhead can increase latency excessively
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Latency 



#2 Limited Scalability of CPUs

• The coordinator uses the CPU for request handling

• Limited packet processing performance

• Multiple coordinators to scale out
• Costs to build and maintain a tier of coordinators
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The Case for In-Network Cloning

• Q: How can we perform dynamic request cloning quickly at scale?

• A: NetClone: switch-based dynamic request cloning

9
Client-based (C-Clone) Coordinator-based (LÆ DGE) Switch-based (NetClone)



Why In-Network Cloning?

• High performance
• Can process a few billion packets per second

• Can process a packet in hundreds of nanoseconds

• High flexibility
• We can customize the switch data plane thanks to the programmable switch 

ASIC like Intel Tofino

10Programmable switch



Requirements and Challenges

• Requirements achieved by using the switch
• Scalability: Tbps-scale packet processing throughput

• Low latency: cloning decisions in a nanosecond-scale

• No sweet spot: dynamic request cloning in the switch

• Strict hardware recourse constraints
• Limited memory space

• Limited computational capability

11

Design the custom switch data plane 

by addressing technical challenges



NetClone Architecture

• Request cloning module
• Clones requests only if the two selected 

servers are idle

• Response filtering module
• Drops the slower response to reduce client-

side overhead

• State tracking module
• Keep track server states

• Custom header
• Support NetClone functionality
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Dynamic Request Cloning

• Step 1: gets the IDs of two candidate servers

• Step 2: sets the dest. IP address to server 1
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Dynamic Request Cloning

• Step 3: read the state of server 1

• Step 4: read the state of server 2

• Step 5 (If any server is busy): no cloning
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Dynamic Request Cloning

• Step 5 (If both servers are idle) – Clone the request
• Forward the original request to server 1

• Recirculate the cloned request 

• Step 6: update the dest. IP address of the clone to server 2

15

GrpTable

Servers

Read

AddrTable

Read

StateTable

Read

ShadowTable

Read

Clone

Original

ToR Switch
Client



Response Processing
• Step 1: update server states (responses carry server states)

• Step 2: Checks the filter table
• No matched ID exists: put request ID into the filter table (Faster response)

• Matched ID exists: drop the response (Slower response)
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Evaluation

• Implementation
• 6.5Tbps Intel Tofino switch ASICs

• Open-loop multi-threaded applications

• Testbed
• 6.5Tbps Intel Tofino switch

• 8 servers with Nvidia ConnectX-5 100G NIC

• Workloads
• Synthetic workload: exponential and bimodal distributions with dummy RPCs 

• Key-value stores with zipf-0.99
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Throughput vs. Latency
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NetClone provides lower tail latency and maintains high throughput

Dynamic cloning



Comparison with LÆ DGE
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NetClone provies better performance than LÆ DGE

No latency 
overhead



Application: Redis
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NetClone improves the performance of real-world applications



Impact of Redundant Response Filtering
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Response filtering reduces client-side overhead



Conclusion

• Microsecond-scale RPCs require microsecond-scale tail latency

• NetClone is a request cloning mechanism that performs fast, scalable, and 
dynamic request cloning by leveraging programmable switches

• Programmable switches can play a critical role in the era of microseconds!
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Thank you!

Contact: gykim@sungshin.ac.kr

Questions?

https://github.com/GyuyeongKim/NetClone-public

NetClone prototype code is available at: 

https://github.com/GyuyeongKim/NetClone-public
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Appendix



Performance with RackSched [OSDI’20]
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NetClone can be integrated with an in-network request scheduler

Exponential distribution Bimodal distribution

Cloning in 

NetClone

Load balancing in RackSched

Hang Zhu, Kostis Kaffes, Zixu Chen, Zhenming Liu, Christos Kozyrakis, Ion Stoica, and Xin Jin, "RackSched: A Microsecond-Scale Scheduler for Rack-Scale Computers," in Proc. of USENIX ODSI, 2020.
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