LossPass: Absorbing Microbursts by Packet Eviction for Data Center Networks

Transactions on Cloud Computing

Gyuyeong Kim and Wonjun Lee

Network and Security Research Lab. (NetLab)

Korea University, Republic of Korea

Background – Data Center Networks (DCNs)

- Fundamental infrastructure for modern services
 - Abundant computing resources
 - Economy of scale

Microsoft data centers

Facebook data centers

Motivation – Microbursts in DCNs

- Bursty traffic pattern consisting of many small flow packets
- Primary cause of transient congestion events in DCNs
- FCT of small flows can be lengthened multiple times due to timeout

Motivation – Explicit Congestion Notification (ECN)

- ECN is widely employed in many transport solutions
 - Marks packets if the instantaneous queue length exceeds the ECN marking threshold *K*
 - Maintains maximum queue length around K
- Leaves **buffer headroom** where microburst can be absorbed
 - More headroom, more burst tolerance

Motivation – Tradeoff of ECN

- Buffer headroom causes a tradeoff between latency and throughput
- Switch requires at least $C \times RTT$ (Bandwidth-Delay Product, BDP) of buffer space to saturate the bottleneck capacity

 $K < C \times RTT$

 $K \geq C \times RTT$

Motivation - Problem and Requirements

- Q:How to absorb microbursts as many as possible while maintaining line-rate throughput?
- Minimized tail latency: should minimize the tail FCTs of small flows
- Line-rate throughput: the link capacity should be fully utilized anytime
- No headroom: should not reserve buffer headroom to absorb microbursts
- Being practical: should be inexpensive to implement

Design – Key Idea of LossPass

- LossPass passes packet loss of small flows to large flows to avoid timeout \bullet of small flows
- When buffer overflow occurs, the switch evicts the buffered large flow **packet** if the arriving packet is a small flow packet
- Key insight: as the flow size increases, the impact of packet loss on FCT decreases

20

The impact of single timeout as the flow size increases

Design – How to find the victim with low complexity?

- A queue is an unsorted list consisting of a mixture of small and large flows
- Finding a large flow packet requires O(n) complexity
- Our approach
 - Leverages two service queues in the port
 - Assigns different queues Q_s and Q_l for small and large flows, respectively
 - We can find the victim packet directly by pointing to the tail packet at Q_l
 - Switch can classify packets with DSCP field in the IP header
 - DSCP values can be tagged at end-hosts

Design – How can we use LossPass with ECN?

- ECN tries to decrease sending rates of small flows since the standard perport ECN marking regards microbursts as the cause of congestion
- Our approach
 - Selective ECN marking by leveraging per-queue ECN marking
 - K_l =recommended value, K_s = Buffer size
 - Only marks large flow packets

9

Implementation

- Hardware implementation
 - Should be implemented at the end of ingress pipeline
 - Clock 1: checks DSCP value, packet size, and minimum buffer size
 - Clock 2: removes the victim by freeing the memory
- Software implementation
 - A software prototype as a Linux qdisc module on a server-emulated switch
 - qdisc_dequeue_tail() to evict the victim
 - skb_peek_tail() to obtain the tail packet size

Evaluation

- Testbed experiments
 - 1Gbps in testbed experiments
 - Memcached KVS microbenchmarks
 - Realistic workloads from Microsoft data centers
 - Web search
 - Data mining
 - DCTCP by default
- Compared schemes
 - ECN with standard marking threshold
 - PIAS: the state-of-the-art flow scheduling solution (NSDI'15)

[PIAS] Wei Bai, Kai Chen, Hao Wang, Li Chen, Dongsu Han, and Chen Tian, "Information-agnostic flow scheduling for commodity data centers," in *Proc. of USENIX NSDI*, 2015.

Evaluation – Memcached Experiments

- Measures the aggregate throughput using iperf
- Measures the 99th percentile QCT of 1K memcached queries

Evaluation – Workload-Driven Experiments

- Sends requests with data size generated by workloads
- 5K flows by varying traffic loads from 50% to 80%

LossPass improves the FCT of small flows while degrading that of large flows slightly

Summary of LossPass

- **Problem:** how to absorb microbursts as many as possible with linerate throughput?
- LossPass: a buffer sharing solution that implements packet eviction by addressing practical design issues
 - Finding the victim packet with low complexity by leveraging two priority queues
 - Providing ECN compatibility through selective ECN marking

• Results

- Memcached experiments
 - Improves the 99th percentile QCT by up to 22.24x compared to ECN
 - Maintains line-rate throughput
- Workload-driven experiments
 - Better than PIAS by up to 3.20x in the 99th percentile FCT

