
LossPass: Absorbing Microbursts by Packet
Eviction for Data Center Networks

Gyuyeong Kim ,Member, IEEE and Wonjun Lee , Fellow, IEEE

Abstract—A bursty traffic pattern, called the microburst, is a key hurdle to achieve low latency for user-facing applications because it

causes excessive packet losses in shallow buffered switches. Explicit Congestion Notification (ECN) can absorb microbursts by

reserving buffer headroom, but the existence of headroom results in a fundamental trade-off between latency and throughput. To this

end, we present LossPass, a buffer sharing mechanism that absorbs microbursts as many as possible while maintaining line-rate

throughput. Specifically, LossPass evicts buffered large flow packets to make free buffer space on demand for arriving small flow

packets. Our solution is inexpensive to implement on hardware. We implement a LossPass prototype and evaluate its performance

through extensive testbed experiments and large-scale simulations. Our evaluation results show that LossPass reduces the FCTof

small flows while maintaining line-rate throughput. For example, in testbed experiments, LossPass outperforms ECN by up to 3:20� in

the 99th percentile FCTof small flows.

Index Terms—Data center switches, low latency, packet loss

Ç

1 INTRODUCTION

MODERN data center applications, such as key-value
stores and data analytics, require low latency for

small messages and high throughput for bulk transfers.
Those applications generate the microburst, which is a
bursty traffic pattern consisting of many small flows [2],
[3], [4]. Microbursts cause a sudden spike in queue length
on the switch buffer. This often leads to excessive packet
losses, hurting the flow completion time (FCT) of small
flows, which is crucial to application message response
times. Unfortunately, modern switches are vulnerable to
microbursts because most of them have a shallow on-chip
packet buffer.

Over past years, Explicit Congestion Notification (ECN)
has garnered significant attention [5], [6]. ECN keeps queue
length low around the ECN marking threshold K, and this
naturally leaves buffer headroom where microburst traffic
can be absorbed. However, despite the efficiency, ECN has
a fundamental trade-off between latency and throughput
due to buffer headroom. To provide line-rate throughput on
a congested link, the switch requires a buffer size larger
than the Bandwidth Delay Product (BDP) [7]. Therefore,
when a high marking threshold (K � BDP) is configured,
the switch can fully utilize link capacity. However, it may
result in unacceptable packet losses due to small headroom
size. On the other hand, a low marking threshold
(K < BDP) enables the switch to absorb microbursts

sufficiently but degrades throughput by causing overreac-
tion of senders to ECN signals.

This motivates us to ask the following question: can we
absorb microbursts as many as possible while maintaining line-
rate throughput? To answer this question affirmatively, we
present LossPass, a switch buffer sharing mechanism that
absorbs microburst traffic as many as possible without
buffer headroom. Specifically, when the buffer is full, Loss-
Pass evicts buffered large flow packets to avoid dropping of
arriving small flow packets. This enables the switch to make
free buffer space on request without reserving buffer head-
room, providing line-rate throughput for bottleneck links.
The key insight behind the idea is that the impact of packet
loss on the FCT decreases rapidly as the flow size increases.
For example, a timeout of 10ms [5] is fatal to a 10 KB flow
requiring only one RTT to finish while it is trivial to a 10
MB flow lasting for many RTTs. Therefore, with LossPass,
small flows can avoid lethal timeouts while causing only
marginal impacts on large flows. Packet eviction is different
from packet dropping in terms of target packets. Packet
dropping targets unbuffered arriving packets whereas
packet eviction handles already buffered packets.

To make the idea truly effective, we should address sev-
eral technical challenges because switch hardware pro-
vides only restricted action primitives and prohibits non-
deterministic operations. The first challenge is how to
reduce the complexity of the victim search operation that
finds a large flow packet in the port buffer. In general,
finding a packet in a queue requires the OðnÞ complexity.
However, switch ASICs do not allow loop operations. We
address this challenge by leveraging multiple class queues
in the port. We classify small and large flows into different
class queues so that the switch can directly find the victim
packet by pointing the tail packet of the large flow queue.
Second, when the size of the arriving packet is larger than
that of the victim packet, multiple packets should be
evicted. This operation is also non-deterministic similar to

� Gyuyeong Kim and Wonjun Lee are with the Network and Security
Research Lab., School of Cybersecurity, Korea University, Seoul 02841,
South Korea. E-mail: {gykim08, wlee}@korea.ac.kr.

Manuscript received 20 May 2020; revised 28 Oct. 2020; accepted 8 Jan. 2021.
Date of publication 26 Jan. 2021; date of current version 6 Dec. 2022.
(Corresponding author: Wonjun Lee.)
Recommended for acceptance by K. Chen.
Digital Object Identifier no. 10.1109/TCC.2021.3054664

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 4, OCTOBER-DECEMBER 2022 2717

2168-7161 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Korea University. Downloaded on December 19,2022 at 00:59:04 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0052-3568
https://orcid.org/0000-0003-0052-3568
https://orcid.org/0000-0003-0052-3568
https://orcid.org/0000-0003-0052-3568
https://orcid.org/0000-0003-0052-3568
https://orcid.org/0000-0001-5286-6541
https://orcid.org/0000-0001-5286-6541
https://orcid.org/0000-0001-5286-6541
https://orcid.org/0000-0001-5286-6541
https://orcid.org/0000-0001-5286-6541
mailto:gykim08@korea.ac.kr
mailto:wlee@korea.ac.kr

the victim search using linear search. To address this, we
evict the victim only if the victim packet is larger than or
equal to the arriving packet. This does not limit the effi-
ciency of LossPass because most of the buffered packets in
the large flow queue are MTU-sized. We measure the
number of missed chances on our testbed to demonstrate
it. Third, large flows may be starved due to repetitive
packet evictions. To prevent starvation, we assign a mini-
mum guaranteed buffer size to the large flow queue,
which can not be taken by small flows. We also measure
the 99th percentile FCT of large flows to show that starva-
tion does not occur. Lastly, LossPass cannot be effective
when an ECN-based transport protocol is employed due
to collision between the ECN behavior and packet eviction.
To make LossPass compatible with ECN, we design a
selective per-queue ECN scheme.

LossPass can be implemented on hardware inexpensively
using existing action primitives with 5 clock cycles. To evalu-
ate the efficiency of LossPass, we have implemented a Loss-
Pass prototype as a Linux qdisc module on a server-
emulated switch. We first evaluate the performance of Loss-
Pass on a small-scale testbed. We conduct a microbenchmark
using a targeted microburst scenario using memcached. The
results show that LossPass improves the 99th percentile query
completion time (QCT) by up to 22:24� compared to ECN
while maintaining line-rate throughput. We also perform
dynamic flow experiments using realistic workloads from
production data centers runningweb search [5] and datamin-
ing [8]. Our experiment results demonstrate that LossPass
provides the lower latency than comparisons, ECN and
PIAS [9]. For example, LossPass achieves the better average
and 99th percentile FCTs of small flows than PIAS by up to
1:31� and 3:20�; respectively.

To complement small-scale testbed experiments, we con-
duct large-scale packet-level simulations using ns-2 [10].
Our results show that LossPass can reduce the average and
99th percentile FCTs of small flows in large-scale data center
networks. In addition, by analyzing packet loss rate and the
impact on the FCT, we demonstrate that reducing the
packet loss rate brings a significant improvement in the FCT
of small flows while affecting the FCT of large flows
slightly. We also demonstrate that LossPass is robust to dif-
ferent network conditions like ECN and transport protocols.

This paper makes the following contributions:

� We show that packet eviction enables the switch to
absorb microbursts sufficiently without buffer head-
room while sustaining line-rate throughput.

� We present LossPass, a buffer sharing mechanism
that implements packet eviction by addressing vari-
ous practical challenges.

� We show that LossPass can be implemented inex-
pensively and evaluate the performance of LossPass
though extensive testbed experiments and large-
scale simulations.

The remainder of the paper is organized as follows. In
Section 2, we describe the background and motivation.
Section 3 provides the design of LossPass. We present the
implementation of a prototype and evaluation results in
Sections 4 and 5, respectively. We discuss related work in
Section 6. Lastly, we conclude our work in Section 7.

2 BACKGROUND AND MOTIVATION

2.1 Microbursts in Data Center Networks

Microbursts are a typical traffic pattern consisting of
many small flow packets, and this is the primary cause of
transient congestion events in data center networks [2],
[3], [4]. The communication pattern of applications is the
main reason of microbursts. In modern distributed appli-
cations, the aggregator node parallelizes tasks across
worker nodes, and the workers return computation
results to the aggregator. Because the processing time
between servers is generally similar, the results often
arrive at the switch output port almost simultaneously.
This causes a sudden spike in queue length and often
leads to buffer overflow. System batching schemes, such
as Large Send Offload (LSO) and Large Receive Offload
(LRO), are also responsible for microbursts [3], [5]. For
example, TCP Segmentation Offload (TSO) is a typical
hardware LSO technique. It forms a batch larger than
MTU and transmits the batch-sized packet to the NIC.
Since packets are transmitted back-to-back, the switch
observes bursty packet arrivals. In this work, we focus
the microburst caused by many small flows rather than
the system batching schemes.

It is important to handle microbursts for the following
reasons. First, packet loss caused by the microburst aggra-
vates user experience seriously. The tail FCT of small
flows, which is crucial to application response times, can
be lengthened multiple times by only a single timeout.
This is because the small flow lasts for a few RTTs
whereas the timeout is hundreds of the RTT. Second, data
center switches are prone to buffer overflow. The switch
stores packets by dividing into multiple fixed-sized cells
for memory management, and they are generally shal-
low-buffered. For example, in Broadcom Tomahawk
ASIC-based switches, a 16 MB of on-chip SRAM buffer is
shared by 4 Memory Management Units (MMUs) where
each MMU has 8�100Gbps ports. In this case, with static
buffer allocation, per-port buffer size is only 512 KB. In
addition, even with dynamic buffer allocation, many
switches limit the buffer occupancy of a single port to
ensure per-port fairness.

2.2 Latency-Throughput Trade-off of ECN

ECN is a packet marking scheme that makes the sender
decrease sending rates before that the queue length
reaches the port buffer size B to avoid congestion proac-
tively. ECN-enabled switches mark packets if the instan-
taneous queue length exceeds the ECN marking
threshold K. This maintains queue length around K and
naturally forms � B�K packets of buffer headroom
where microbursts can be absorbed. Many transport pro-
tocols [5], [11] are designed to work in conjunction with
ECN to decrease packet loss rate. Note that ECN in data
centers uses the instantaneous queue length to react
microbursts quickly, not the average queue length in the
Internet environment.

Unfortunately, the existence of headroom causes a fun-
damental trade-off between latency and throughput. The
switch requires at least C �RTT (i.e., the BDP) of buffer
size to provide line-rate throughput on a bottleneck link

2718 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 4, OCTOBER-DECEMBER 2022

Authorized licensed use limited to: Korea University. Downloaded on December 19,2022 at 00:59:04 UTC from IEEE Xplore. Restrictions apply.

where C and RTT denote link capacity and the base
RTT [7].1 IfK � C �RTT , the switch can maintain high link
utilization. However, as the headroom is small, microbursts
cannot be absorbed fully, leading to excessive packet losses.
In contrast, if we configure K < C �RTT , the switch can
absorb bursts sufficiently, but cannot provide line-rate
throughput due to overreaction of senders to the ECN con-
gestion signal.

We conduct a series of experiments to show the trade-off
of ECN. We build a memcached cluster with 7 nodes and a
gigabit switch. A client node sends read queries over four
server nodes with pre-populated key-value pairs. The other
two nodes generate background traffic. By varying the ECN
marking threshold, we measure the receiver-side aggregate
throughput with and without LSO. We also measure QCTs
of 1 K 16-threaded queries with 32 KB items. Fig. 1 shows
the achieved throughput and the normalized average and
99th percentile QCTs. We use ECN* (ECN-enabled
TCP) [11] and DCTCP [5] for the transport protocols. We
omit the QCT results with LSO because the results with and
without LSO are similar. We can clearly observe that the
throughput and latency increase as K grows. Although
DCTCP achieves better throughput than ECN*, it still loses
393 Mbps when K=5. LSO makes throughput worse that,
compared to the results without LSO, it degrades through-
put by 1:13� and 1:03� on average for ECN* and DCTCP,
respectively. We also find that the 99th percentile QCT
increases rapidly as K grows because the headroom size
goes small.

3 LOSSPASS DESIGN

3.1 Deisgn Goals and Basic Idea

Our goal is to design a solution that absorbs microbursts as
many as possible while maintaining line-rate throughput.
We stipulate that a good solution should satisfy the follow-
ing requirements simultaneously:

� Minimized tail latency: Our solution should minimize
the tail FCTs of small flows for low latency.

� Line-rate throughput: The link capacity of the
switch should be fully utilized anytime for high
throughput.

� No headroom: Our solution should not reserve buffer
headroom to absorb microbursts.

� Being practical: Our solution should be inexpensive to
implement.

To achieve the goal, LossPass passes packet loss of small
flows to large flows to avoid timeout of small flows. Specifi-
cally, when the port buffer has no vacancy, the switch evicts
a buffered large flow packet if the arriving packet is a small
flow packet. The switch can buffer the arriving packet since
free buffer space is obtained by packet eviction. This brings
the following benefits:

� Since the switch can absorb microbursts as many as
possible by evicting buffered packets, the tail FCT of
small flows can be minimized.

� The switch does not have to limit queue length less
than the BDP to absorb microbursts, hence the link
capacity can be fully utilized.

� The switch can make free buffer space on demand
irrelevant to the buffer occupancy of large flows.
Therefore, the switch does not have to reserve buffer
headroom for microburst traffic.

� Packet eviction requires memory read and write,
which are already available memory operations in
switch ASICs. Therefore, LossPass can be imple-
mented inexpensively using commodity hardware.

The above benefits come at costs. Since the switch evicts
buffered packets of large flows, this approach potentially
degrades the FCT of large flows. However, this is a reason-
able trade-off because we can reduce the FCT of small flows
significantly while lengthening the FCT of large flows
slightly. The reason why the expected benefits for small
flows are larger than the expected loss for large flows is that
the impact of packet loss decreases as the flow size grows.
Not surprisingly, the timeout is fatal to small flows consist-
ing of a few packets, but it is only a small portion of the
entire FCT of large flows.

3.2 Detailed Mechanisms

Fig. 2 shows the packet processing pipeline of a switch ASIC
with LossPass. At a high-level, LossPass consists of the
queue lookup stage and the arbiter. The queue lookup stage
determines the index of class queues in the output port
where the packet will be buffered. The arbiter, the core com-
ponent of LossPass, performs packet enqueueing decisions.
Unlike traditional switch ASICs, the arbiter with LossPass
can evict buffered packets to make free buffer space for
arriving packets.

Algorithm 1 describes the pseudocode of packet
enqueueing decision of the arbiter. The arbiter in existing
switch ASICs, if the buffer has no vacancy (Line 1), drops
the current packet (Line 10). However, with LossPass,
the arbiter performs additional operations. Specifically, the
switch refers to queue index metadata to check whether the
current packet belongs to a small flow. If the packet is a part
of the small flow (Line 2), the arbiter refers to the tail packet
size at the large flow queue to ensure that only one eviction
will happen (Line 3). Next, the arbiter ensures that the small
flow queue will not exceed the allowed buffer occupancy
(Line 4). The arbiter then evicts the tail packet of the large
flow queue (Line 5) and enqueues the current packet to the
obtained free buffer space (Line 6). Lastly, regardless of
buffer overflow, the arbiter marks the packet as congestion
experienced if the enqueue ECN marking is enabled (Lines
14-16). Lines 2-4 and Lines 14-16 translate the idea of packet

Fig. 1. [Experiment] Trade-off between latency and throughput in ECN.

1. When end-hosts use DCTCP as the transport protocol, the switch
requires only C �RTT � 0:17 to achieve line-rate throughput though
higherK is required in practice due to various factors [3], [5], [12].

KIM AND LEE: LOSSPASS: ABSORBING MICROBURSTS BY PACKET EVICTION FOR DATA CENTER NETWORKS 2719

Authorized licensed use limited to: Korea University. Downloaded on December 19,2022 at 00:59:04 UTC from IEEE Xplore. Restrictions apply.

eviction to a practical solution by addressing various design
challenges. In the following, we clarify how we handle the
challenges in detail.

Algorithm 1. Enqueueing Decision in Arbiter

� P : current active packet
� B : port buffer size determined by buffer management
policy
� Q : queue index metadata assigned by queue lookup table
� Qs : small flow queue
� Ql : large flow queue
� Bl : reserved buffer size for Ql

� Pl
t : tail packet in Ql

1: if P:lenþ SQi:len > B then " Buffer overflow
2: if P:Q ¼¼ Qs then " Section 3.2.1 Small flow packet?
3: if P:len � Pl

t :len then " Section 3.2.2 Enough victim
size?

4: if P:lenþQs:len � B�Bl then " Section 3.2.3 No
Starve?

5: Evict(Pl
t) " Evict buffered packet

6: Enqueue(P;Q) " Enqueue current packet
7: end if
8: end if
9: end if
10: Drop(P) " Drop current packet
11: else " Buffer is not full
12: Enqueue(P;Q) " Enqueue current packet
13: end if
14: if ECN is enabled then
15: PerQ_ECN_mark(P) " Section 3.2.4 Marks packet if ECN

is enabled
16: end if

3.2.1 Reducing Searching Overhead

To perform packet eviction, we must find the victim packet
that belongs to large flows first. Since a queue is an unsorted
list consisting of a mixture of small and large flows, the
complexity to find a large flow packet using linear search is
OðnÞ where n is the queue length. Unfortunately, the cur-
rent switch ASICs only allow deterministic operations to
guarantee a low processing delay. Therefore, we cannot
find the victim packet using linear search.

LossPass finds the victim packet with Oð1Þ complexity by
leveraging two class queues in the switch port. Modern
switches typically provide 4-8 class queues per port, which
we can assign different traffic classes to each class queue.
We assign different queues Qs and Ql to small and large
flows, respectively. Since Ql contains only large flow

packets, we can find the large flow packet directly by refer-
ring to the pointer of the tail packet at Ql.

To classify packets into the class queues, we add the
queue lookup stage in the ingress pipeline. The lookup
stage reads the DSCP field at the IP header and updates the
queue metadata Q with the matched queue index. The
DSCP value can be tagged at the end-host using a Linux
NETFILTER hook that tags the DSCP value based on socket
metadata including process IDs, IP addresses, and port
numbers. We can also use Heavy-Hitter Filter (HHF)
qdisc [13] or PIAS [9] to classify flows based on a size
threshold T . The first T bytes are tagged with the DSCP
value of Qs and the remaining bytes are tagged with the
value of Ql. T is determined by considering flow size distri-
butions. It has no dependency on the packet processing
logic of switches. Therefore, we can use T of PIAS for Loss-
Pass as well.

Although we leverage multiple queues, LossPass does
not enforce a specific packet scheduler since the LossPass
operation happens before packet buffering. Therefore, the
network operator can use generic packet schedulers like
strict priority queueing and round-robin. The recom-
mended packet scheduler is strict priority queueing, which
can accelerate small flows.

3.2.2 Dealing With Multiple Evictions

The switch may require multiple packet evictions because
the arriving packet size may be larger than the victim packet
size. Suppose that the arriving packet is 1,500 bytes and the
victim is a 64-byte packet. For this case, at least more than
two packets must be evicted to enqueue the arriving packet.
If every packet in Ql is 64 bytes, d1500=64e ¼ 24 rounds are
required. This can increase processing delay excessively.
More importantly, similar to the victim search operation,
we cannot add non-deterministic operations in the packet
processing pipeline.

To address the above issue, we perform packet eviction
only if the arriving packet size is less than or equal to that of
the victim packet. This means that multiple evictions never
occur. The switch may miss chances that the arriving packet
can be buffered by evicting multiple victims. However, the
efficiency of LossPass does not decrease much because such
cases are rare in practice. This is because Ql contains mostly
MTU-sized packets due to the large flow size. LSO mecha-
nisms, which generate batches larger than the MTU size, do
not have effects on the buffered packet size because the NIC
splits the batch into MTU-sized packets before transmitting
them to the wire. This also guarantees that the switch has

Fig. 2. Packet processing pipeline with LossPass. The arbiter performs packet enqueueing decisions including packet eviction based on the buffer
occupancy of class queues, which are assigned by the queue lookup stage in the ingress pipeline.

2720 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 4, OCTOBER-DECEMBER 2022

Authorized licensed use limited to: Korea University. Downloaded on December 19,2022 at 00:59:04 UTC from IEEE Xplore. Restrictions apply.

enough free cells for the arriving packet when the target
switch architecture divides packets into multiple fixed-sized
cells for memory management.

3.2.3 Preventing Starvation

Since large flow packets are evicted, one might concern that
large flows may be starved due to excessive eviction. Fortu-
nately, since small flows comprising microbursts last only
for a short-time scale and their size is small, starvation is
uncommon. Furthermore, many application workloads
have heavy-tailed flow size distributions where most of
bytes are from large flows [5], [8], [14], [15], [16]. In testbed
experiments, we measure the 99th percentile FCT of large
flows to show that starvation does not occur in production
workloads. However, this does not guarantee that starva-
tion never occur because workloads can change over time.

To mitigate potential risks of starvation, we assign a
guaranteed buffer size Bl to Ql. This ensures that Bl of
buffer space cannot be taken by Qs. Therefore, Bl prevents
cases that large flows cannot occupy any buffer space,
which can lead to starvation. With Bl, the queue length of
Qs is limited to B�Bl. Network operators should configure
Bl by considering the flow size distribution of their
workloads.

3.2.4 Providing Compatibility With ECN

LossPass should be compatible with ECN-based protocols
because many data centers employ ECN-based transport
protocols [5], [17]. However, with ECN, LossPass may not
be effective. ECN tries to decrease congestion window size
of arriving small flows, not buffered large flows. This is
because the standard per-port ECN marking regards micro-
bursts as the cause of congestion, which make the queue
length exceed the marking thresholdK.

To provide compatibility with ECN, LossPass uses selec-
tive ECN marking by leveraging per-queue ECN marking.
Per-queue ECN marking allows the switch to mark packets
using different ECN marking threshold Ki where i denotes
the class queue index. We set Ks to the port buffer size
while Kl is set to the recommended value of the employed
ECN protocol. Therefore, the switch does not mark packets
of Qs and marks only packets in Ql. Thus, when microburst
traffic arrives, the switch can absorb microbursts and
decrease the congestion window size of large flows at the
same time. Note that synthesizing LossPass and ECN does
not mean that our solution depends on buffer headroom to
absorb microbursts. LossPass can make free buffer space
regardless of ECN marking. ECN only controls the queue-
ing delay, and LossPass takes charge of microburst absorp-
tion. In addition, although the senders of flows in Qs do not
receive ECN signals, they still can adjust congestion win-
dow size using triple duplicate ACKs and TCP retransmis-
sion timer.

3.3 Analysis of LossPass

We show how LossPass works through theoretical analysis.
Absorbing Microbursts Without Headroom. Consider a

switch output port whose link capacity is C. The port is
shared by N infinitely long-lasting large flows with the
same RTT in the compute rack. At time t, the queue length

in the port can be given by

qðtÞ ¼
XN

i¼1

wiðtÞ � C �RTT; (1)

where wiðtÞ denotes the window size of ith sender at time t
and RTT is the base RTT. Since the number of concurrent
large flows on a link is small [5], we can assume that the
flows are synchronized. Thus

w1ðtÞ ¼ w2ðtÞ ¼ � � � ¼ wNðtÞ ¼ wðtÞ; (2)

qðtÞ can be simplified as

qðtÞ ¼ NwðtÞ � C �RTT: (3)

For ECN, qðtÞ reaches the marking threshold K when
wðtÞ ¼ K þ C �RTTð Þ=N . Since it takes RTT to notify con-
gestion to the sender, qðtÞ can reach K þ 1. Recall that we
have N flows. Therefore, the maximum queue length in the
port for ECN is

qECNmax ¼ K þN: (4)

Let B denote the port buffer size where B � C �RTT .
Modern switches satisfy B � C �RTT . For example, Broad-
com Trident II ASIC can assign 192 KB of buffer per port
equally while base RTT is less than 100ms in 10 Gbps net-
works. With qECNmax , we can obtain the maximum absorbable
burst size of ECN that

mECN
max ¼ B� qECNmax ¼ B� ðK þNÞ: (5)

Eq. (5) shows the buffer headroom of ECN. SinceK 	 N ,
the headroom size depends onK.

LossPass has no buffer headroom, hence qðtÞ can reach B.
Thus, we have the maximum queue length in the port for
LossPass as qLPmax ¼ B. However, LossPass can evict buffered
large flow packets. Therefore, the maximum absorbable
burst size of LossPass can be given by

mLP
max ¼ B� qLPmax �Bt

� � ¼ Bt; (6)

where t > 0 is the fraction of large flows in the port.
We now compare ECN and LossPass. Eq. (6) can be

rewritten as B�Bð1� tÞ. Since we have considered a case
where only large flows exist in the port, t ¼ 1. Since K þ
N < B, it is obvious that B�Bð1� tÞ > B� ðK þNÞ
when t ¼ 1. Thus, we can conclude that mLP

max > mECN
max . Let

us consider a case where small and large flows are mixed in
the port. Still, t is generally high due to the heavy-tailed
nature of flow size distribution in data centers. For example,
95%(t ¼ 0:95) of bytes are from large flows in a production
web search workload [5], [18]. Thus, the inequality mLP

max >
mECN
max still holds in practice. This suggests that LossPass can

absorb microbursts as many as possible without headroom.
We now consider a case where only small flows exist in

the buffer. LossPass is designed to make small flows occupy
the port buffer as many as possible by evicting buffered
large flow packets. Therefore, LossPass does not perform
since the objective of LossPass is already fulfilled.

KIM AND LEE: LOSSPASS: ABSORBING MICROBURSTS BY PACKET EVICTION FOR DATA CENTER NETWORKS 2721

Authorized licensed use limited to: Korea University. Downloaded on December 19,2022 at 00:59:04 UTC from IEEE Xplore. Restrictions apply.

Line-Rate Throughput. We show that LossPass can achieve
line-rate throughput. To achieve 100 percent throughput on
the bottleneck link, the inequality K � C �RTT must be
satisfied. Since qLPmax ¼ B, we can say that LossPass is equiva-
lent to ECN with K ¼ B. Recall that B � C �RTT . Thus,
LossPass satisfies the inequality.

3.4 Alternative Designs

Selective Packet Dropping. Cisco AFD [19] reserves a
buffer to absorb microbursts by limiting the buffer share
of large flows. AFD is in the same vein with ECN since
it reserves buffer headroom to absorb microbursts. AFD
results in worse performance than ECN because when
the queue length reaches the threshold, AFD drops the
packets whereas ECN marks the packet. Since AFD also
uses buffer headroom, the trade-off between latency and
throughput still exists. Aeolus [20] is a recent solution
that uses selective packet dropping. The switch drops
low priority packets when the port queue length exceeds
a given threshold. However, high priority packets are
dropped only when buffer overflow occurs. Similar to
AFD, Aeolus depends on buffer headroom that limits
burst tolerance efficiency.

Deep Buffered Switches. Some hardware vendors provide
deep buffered data center switches (e.g., Arista 7280R and
Dell EMC Networking S4200-ON). However, most switches
use a on-chip SRAM buffer because the deep buffer is too
slow to meet latency requirements of modern user-facing
applications. The deep buffer is provided by an off-chip
DRAM. DRAM is less expensive than SRAM, but does not
support cut-through switching and high switching capacity
because of limited bandwidth. External memory also
requires additional clock cycles for packet lookup opera-
tions. It can also cause excessive buffering of packets, lead-
ing to a large queueing delay.

Shared Buffer Allocation. Some buffer management
schemes [2], [21] allow an output port to grab up excessive
buffer space. For example, Arista 7050 series [21] allocate up
to 56 percent of buffer space to a single port. However, it
harms short-term fairness between ports because a single
port can take away excessive buffer space that can be allo-
cated to the other ports. The violation of short-term fairness
can be harmful when many ports are busy and concurrent
microbursts appear. LossPass is free from the fairness issue
and does not require additional buffers since we make free
buffer space by evicting buffered packets in the same port.
LossPass is actually complementary to such buffer manage-
ment schemes. For instance, the switch can absorb micro-
bursts first using shared buffers and perform packet
eviction for the remaining packets. We also use the dynamic
threshold algorithm [22] for large-scale simulations in per-
formance evaluation.

Dedicated Buffer Allocation. The switch can reserve a dedi-
cated buffer size to absorb microburst traffic. For example,
we can assign 50 percent of port buffer to Qs. Since Qs is for
small flows, the switch can abosrb microbursts regardless of
buffer occupancy of large flows. However, similar to ECN,
the dedicated buffer approach also depends on buffer head-
room. The switch cannot absorb traffic more than the dedi-
cated buffer size when the rest buffer is full.

4 IMPLEMENTATION

In this section, we first discuss the implementation of Loss-
Pass on hardware. Next, we describe a software prototype
of LossPass in detail.

4.1 Fixed-Function Switch ASIC

The feasibility of hardware implementation as fixed-func-
tion switch ASICs can be demonstrated by analyzing the
required action primitives and the number of clock cycles.
As shown in Section 3, LossPass does not require prohibited
operations like loops, and the queue lookup stage and the
arbiter can be implemented using existing action primitives
like comparators and memory read/write.

We now analyze the consumed clock cycles by LossPass.
We consider hardware running at a typical clock frequency
of 1 Ghz and the queue data structure is a doubly-linked
list. The queue lookup stage can be implemented as a
TCAM table. The switch first finds the DSCP field value of
the IP header in the table entries (1 cycle). Next, the switch
updates queue metadata with the matched queue index (1
cycle). For the arbiter, all the conditions (Lines 2-4 in Algo-
rithm 1) can be pipelined because they have no read/write
dependency (1 cycle). Next, the switch frees memory of the
victim packet by shifting the tail pointer of the large flow
queue (1 cycle). Lastly, the switch enqueues the packet into
the buffer by linking the packet to the small flow queue (1
cycle).

Overall, LossPass consumes 2 clock cycles for the queue
lookup stage and 3 clock cycles for the arbiter. This over-
head is small because switch ASICs generally require hun-
dreds of clock cycles to process a packet. For example,
Broadcom Trident 3 ASIC offers a minimum per-packet
processing delay of 800 clock cycles. For this case, the over-
head of LossPass is only 0.63 percent (5/800).

A challenge emerges when the reference queue structure
is a singly-linked list. In the singly-linked list queue, evict-
ing the tail packet requires n clock cycles because we must
find the penultimate packet to update the tail pointer. In
this case, evicting the head packet can be an alternative
option because it requires no pointer update. The head evic-
tion increases the FCT as much as the packet sojourn time,
but this is tolerable because retransmission timer is gener-
ally tens of the packet sojourn time.

4.2 Programmable Switch ASIC

Recently, programmable switch ASICs like Barefoot
Tofino [23] are emerged. These ASICs allow us to customize
packet processing pipelines by adopting the Reconfigurable
Match-action Table (RMT) architecture [24].

The queue lookup module can be implemented as a
match-action table in the ingress pipeline easily. The DSCP
field is the match key and the class queue index is the action
parameter. It is challenging to implement the arbiter
because the packet buffer is still a fixed-function block even
in programmable switch ASICs. Therefore, we must imple-
ment the arbiter indirectly. Note that this is not an issue in
fixed-function ASIC implementation. Since LossPass
addresses packet enqueueing decisions, the arbiter should
be located at the end of the ingress pipeline. One idea is to
leverage a register array that stores only packet metadata.

2722 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 4, OCTOBER-DECEMBER 2022

Authorized licensed use limited to: Korea University. Downloaded on December 19,2022 at 00:59:04 UTC from IEEE Xplore. Restrictions apply.

Every packet records its unique ID as metadata in register
slots. Similar to head packet eviction, the switch may drop
victim packets at the egress pipeline if the recorded meta-
data becomes invalid if other packets overwrite the register
slot. However, this may cause an idle time on the link,
degrading throughput. Another idea is to bounce micro-
burst traffic to the switch control plane, which has off-chip
DRAM. Note that modern baremetal switches have a CPU
module including a x86 CPU and DRAM. The control plane
returns packets to the data plane upon receiving. Although
packet latency increases, the switch can prevent packet loss
of microbursts. The correct implementation of LossPass
using programmable switch ASICs is our future work.

4.3 Software Prototype

We have implemented a LossPass prototype as a Linux
qdisc module on a server-emulated switch as illustrated in
Fig. 3. The module implements multiple priority queues by
creating multiple FIFO qdiscs for each NIC. The key
stages are as follows:

Enqueueing.When the packet from TCP/IP stack arrives to
the qdisc layer, the module first returns the index of the cor-
responding priority queue by referring to the DSCP field.
Next, the switch checks whether the port buffer has enough
space to enqueue the packet. Basically, the switch enqueues/
drops the packet based on the remaining buffer size. With
LossPass, the switch performs packet eviction if conditions
are met. To evict the buffered tail packet, we call qdisc_de-
queue_tail() in the qdisc. When the switch evicts a buff-
ered packet, we need to know the size of tail packet in the
large flow queue. The size can be easily obtained using
skb_peek_tail() supported in the qdisc. The switch also
performs ECNmarking.

Dequeueing. Packet dequeueing is done by the packet
scheduler. The dequeued packet goes to NIC driver and
NIC hardware before it is transmitted to the wire. Our
qdisc module uses a Token-Bucket rate limiter to shape
outgoing traffic at 99.5 percent of the NIC capacity to moni-
tor queue length accurately and to avoid excessive buffering
on TX ring.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of LossPass to
answer the following questions:

� How does LossPass perform in practice? We first con-
duct a series of testbed experiments using memc-

ached and realistic workloads derived from
production data centers to demonstrate the efficiency
of LossPass.

� Does LossPass scale to large-scale data center networks?
We build a large leaf-spine topology and evaluate
LossPass against comparisons to show that LossPass
performs well in the large network.

� How LossPass brings performance gains in detail? By
analyzing packet loss rate, we clarify how LossPass
decreases the FCT of small flows significantly.

� How is LossPass robust to different network environ-
ments? We show that LossPass is robust to network
conditions like ECN and transport protocols.

Compared Schemes. We basically compare LossPass with
ECN. We also compare our scheme against PIAS [9] in
dynamic flow experiments because we use the DSCP tag-
ging module of PIAS to classify small and large flows in
dynamic flow experiments. PIAS is the state-of-the-art non-
clairvoyant flow scheduling solution that implements multi-
level feedback queueing.

Workloads. For dynamic flow experiments, we use realis-
tic workloads derived from production data centers run-
ning a web search [5] and a data mining [8], which are
shown in Fig. 4. The workloads have flows with heavy-
tailed size distributions whose mean flow sizes are 1.58 MB
for the web search and 7.12 MB for the data mining.

5.1 Testbed Experiments

Testbed Setup.We have built a small-scale testbed to emulate
a compute rack. The testbed consists of 7 servers connected
to a server-emulated switch. Each server is with Intel Giga-
bit NIC. The switch is equipped with multiple Intel I350-T4
v2 Gigabit NICs. For the switch, we have disabled LSO to
emulate switch hardware behaviors more correctly. The
base RTT is roughly 500us.

Switch and Transport. Each port in the switch has the 128
KB of buffer completely shared by queues. For the transport
protocol, we use DCTCP [5] withK=45 packets (�66 KB) by
default. We enable enqueue ECNmarking to make LossPass
compatible with ECN-based protocols. We set RTOmin to
10ms as suggested in existing works [5]. For static flow
experiments, we use a NETFILTERmodule to tag DSCP val-
ues using port numbers. In dynamic flow experiments, we
employ two-level PIAS [9] to classify small and large flows.
We use 1 MB for the demoting threshold T as suggested in
the paper [9]. We set a guaranteed buffer of Ql to 0 for maxi-
mized burst tolerance. We use strict priority queueing as
the packet scheduler that the small flow queue has the high-
est priority.

Performance Metrics. Our primary performance metric is
the FCT. We breakdown the FCT across different flow sizes
to analyze the impact on small (� 100 KB), medium (> 100
KB & � 10 MB), and large flows (> 10 MB). For clear com-
parison, the results are normalized by the values of

Fig. 3. LossPass software prototype as a Linux qdiscmodule.
Fig. 4. Used workloads in dynamic flow experiments and simulations.

KIM AND LEE: LOSSPASS: ABSORBING MICROBURSTS BY PACKET EVICTION FOR DATA CENTER NETWORKS 2723

Authorized licensed use limited to: Korea University. Downloaded on December 19,2022 at 00:59:04 UTC from IEEE Xplore. Restrictions apply.

LossPass. Due to space limit, we omit the results of medium
flows in testbed experiments.

5.1.1 Static Flow Experiments

We begin with a static flow experiment.
Methodology. For static flow experiments, in addition to

DCTCP, we consider ECN* [11] (ECN-enabled TCP)
because it shows the net effect of ECN. We first inspect
throughput on the bottleneck link. Two senders transmit
flows for 10 seconds using iperf and the receiver calcu-
lates average aggregate goodput. Next, we measure the
99th percentile QCT of memcached. Memcached is a widely
used key-value store for user-facing services like web search
engines and video streaming services. We pre-populate 4
server instances with 1 K key-value pairs with a 32 KB item
using PUT operation. Two senders generate background
flows to the receiver using iperf. The client sends a 16-
threaded GET query over the servers and the servers
response with the requested item. Each query can be com-
pleted only if all response flows are finished. The client
issues the subsequent query when the current query is com-
pleted. We generate 1 K queries and obtain the QCT of the
queries. We normalize the QCT by the values of LossPass.

Results. Fig. 5 shows the aggregate throughput and the
99th percentile QCT for ECN*, DCTCP, and LossPass. Note

that the x-axis is reversed so that lower QCTs are to the
right. Each label on data points of ECN* and DCTCP
denotes the ECN marking threshold K. It is easy to see that
LossPass is the best in both throughput and the tail QCT,
which suggests that our solution successfully absorbs
microbursts sufficiently without harming line-rate through-
put. LossPass provides nearly 100 percent of throughput
and outperforms the comparisons by up to 22:24� in the
tail QCT. LossPass achieves 100 percent throughput because
it does not have to limit queue length to maximize burst tol-
erance. Unlike LossPass, each of ECN-based transport pro-
tocols forms an achievable trade-off region with Ks.
Although DCTCP requires lower K than ECN* to achieve
line-rate throughput, the throughput achieved by DCTCP
withK=10 is only 620 Mbps.

5.1.2 Dynamic Flow Experiments

We inspect the FCT using realistic data center workloads.
Methodology. We use a client-server application to gener-

ate traffic [25]. One server acts as the receiver and the other
servers are senders. The receiver opens 5 persistent TCP
connections to each of the senders. The receiver sends
requests based on a Poisson process to senders with data
size generated by the workloads through available connec-
tions. If there is no available connection, the receiver estab-
lishes a new connection. The senders respond with the
requested data. We generate 5 K flows by varying traffic
loads from 50 to 80 percent.

Small Flows. We examine the average and 99th percentile
FCTs of small flows. Figs. 6a and 7a report the average FCT.
As expected, LossPass works the best for both workloads.
Our solution outperforms ECN by up to 2:00� and 1:63� for
the web search workload and the data mining workload,
respectively. Compared to PIAS, LossPass delivers the better
performance by up to 1:31� and 1:09� for each ofworkloads,
respectively. For the 99th percentile FCT, LossPass signifi-
cantly improves the performance as shown in Figs. 6b and
7b. Compared to PIAS, our scheme offers the lower 99th per-
centile FCT whose gap ranges are within 1:20�
 1:92� in

Fig. 5. [Experiment] Aggregate throughput and the QCTof memcached.

Fig. 6. [Experiment] FCTstatistics across different flow sizes in the web search workload.

Fig. 7. [Experiment] FCTstatistics across different flow sizes in the data mining workload.

2724 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 4, OCTOBER-DECEMBER 2022

Authorized licensed use limited to: Korea University. Downloaded on December 19,2022 at 00:59:04 UTC from IEEE Xplore. Restrictions apply.

the web search workload. The gaps are decreased in the data
mining workload. However, LossPass is still better than
PIAS by up to 1:66�: The difference between the two work-
loads is due to that the data mining workload has a more
heavy-tailed flow size distribution.

Large Flows.We now inspect the results of large flows. The
main concern of LossPass is howmuch the FCT of large flows
is affected by being evicted instead of small flows. Figs. 6c
and 7c show the average FCT of large flows for both work-
loads. LossPass performsworse than ECN and PIAS slightly.
Our scheme underperforms ECN and PIAS by 0:93� and
0:94� on average in the web search workload. This is the
expected because LossPass trades the FCT of large flows for
that of small flows. By considering the performance gain on
the FCT of small flows as shown in Figs. 6a and 6b, we grace-
fully argue that the FCT degradation on large flows is tolera-
ble. The results in the data mining workload show that
LossPass has similar performance to ECN and PIAS due to
its flow size distribution. The performance gap ranges are
within 1:00�
 1:02� and 0:99�
 1:05� for ECN and PIAS,
respectively. Figs. 6d and 7d show the 99th percentile FCT of
large flows. If packet eviction of LossPass starved large
flows, the tail FCT should be degraded significantly. How-
ever, the results are similar to those of the average FCT. This
suggests that LossPass does not cause starvation of large
flows. The primary reason is that the size of small flows is
not enough to starve large flows.

5.1.3 Deep Dive

We now analyze the results of the web search workload
with 70 percent of load for deep understanding.

How Many Evictions Occur? We examine how many
evictions occur by LossPass with and without ECN. We
also measure the number of missed eviction changes
which the arriving packet for the small flow queue is
larger than the buffered tail packet in the large flow
queue. Table 1 shows the packet statistics of large flows.
Overall, 4.4 M of packets are generated as parts of large
flows. We can find that more dropping and eviction
occur when ECN is disabled because queue length is not
controlled. We also observe that LossPass does not cause
excessive evictions. The number of missed chances is
rare that we observe only 26 and 15 cases. This suggests

that it is reasonable to limit the number of eviction to
prevent the increase of processing delay.

Net Effect of Packet Eviction. We now investigate the net
effect of packet eviction. Table 2 shows how packet eviction
changes the packet loss rate and the tail FCT. The results are
normalized to the values of LossPass. With No-ECN, the
packet loss rate of small flows is reduced by 41:55�; which
lead to 12:38� of tail FCT reduction. The huge gap is due to
poor performance of No-ECN. The packet loss rate of large
flows changes by 0:54�; but the tail FCT of large flows does
not change much. This is because large flows are robust to
packet loss. The experiments with per-port and per-queue
ECN schemes show similar results. Since ECN limits queue
length to avoid packet loss, the improvement degree in the
packet loss rate and the corresponding tail FCT for small
flows are less than those of No-ECN. However, LossPass
still improves the tail FCT of small flows and does not
degrade the tail FCT of large flows. The results of 99th per-
centile FCT of large flows also suggest that LossPass does
not cause starvation.

Impact of Minimum Guaranteed Buffer. Fig. 8 shows the
FCTs of LossPass with different guaranteed ratios when
load is 70 percent. The FCTs are normalized to the results of
PIAS. We set the guaranteed buffer for Ql to Kl � a where
a � 1 is the guaranteed ratio. We find that the FCT of large
flows is improved as the a grows. However, since large
flows are relatively insensitive to packet loss and the work-
load does not generate extremely large bursts, the degree of
change is marginal unlike small flows. This suggests that
starvation is rare in production workloads and the mini-
mum guaranteed buffer can prevent starvation by reserving
a dedicated buffer for large flows.

5.2 Large-Scale ns-2 Simulations

We also perform large-scale simulations using ns-2 [10].
Methodology. We build a leaf-spine topology, which has 192
servers, 8 leaf switches, and 2 spine switches. Each leaf
switch has 24�10Gbps downlinks and 2�40Gbps. The base
RTT is 85.2ms. We use ECMP as the load balancing scheme.
We generate 5 K flows across 192�191 communication pairs
by varying traffic load from 50 to 90 percent. We use the
same transport settings as in the testbed experiments except
the following settings. We set RTOmin to 5ms, the lowest sta-
ble value in jiffy timer [26]. Leaf and spine switches have
9 and 16 MB shared buffers, respectively. For buffer man-
agement, we use the dynamic threshold algorithm [22].

5.2.1 Dynamic Flow Experiments

We observe that our simulation results are similar to the
experiment results. LossPass works the best on small flows
as expected. Figs. 9a and 10a report the average FCT for

TABLE 1
[Experiment] Packet Statistics of Large Flows

Total Dropped Evicted Missed

w/ ECN 4.4M 2400 4522 26
w/o ECN 4.4M 6657 6939 15

TABLE 2
[Experiment] Improvement Degree by Packet Eviction

Packet loss rate 99th percentile
FCT

Small Large Small Large

No-ECN 41.55� 0.54� 12.38� 0.99�
Per-Port ECN 10.61� 0.24� 1.13� 1.01�
Per-Queue ECN 11.27� 0.42� 1.32� 1.01�

Fig. 8. [Experiment] Impact of guaranteed buffer size.

KIM AND LEE: LOSSPASS: ABSORBING MICROBURSTS BY PACKET EVICTION FOR DATA CENTER NETWORKS 2725

Authorized licensed use limited to: Korea University. Downloaded on December 19,2022 at 00:59:04 UTC from IEEE Xplore. Restrictions apply.

small flows. Our scheme performs better than the compari-
sons within 2:42�
 5:91� in the web search workload. In
the data mining workload, the improvement degree is less
than that in the web search workload, but LossPass is gener-
ally better. For the 99th percentile FCT, LossPass offers more
improved performance as shown in Figs. 9b and 10b. For
example, in the web search workload, LossPass achieves the
99th percentile FCT better than PIAS by up to 14:03�:

Figs. 9c and 10c report the results for the average FCT of
medium flows. LossPass shows the best performance among
comparisons in both workloads. Figs. 9d and 10d show the
average FCT of large flows for both workloads. We find that
LossPass performs better than ECN, but has similar perfor-
mance to PIAS. In the web search workload, compared to
ECN, our scheme achieves the average FCT better by 1:07� on
average. LossPass and PIAS has similar performance and the
maximum gap is only 0:99�: The results in the data mining
workload are similar to those in theweb searchworkload.

5.2.2 Root of Performance Gains

To clarify how does LossPass bring performance gains, we
compare LossPass with Droptail and Droptail-2Q. Droptail-
2Q uses a droptail scheme using two-level SPQ. We also use
Droptail-2Q since LossPass employs two-level SPQ by
default. The only difference between LossPass and Drop-
tail-2Q is packet enqueueing decision at the end of ingress
pipeline. All of the schemes use TCP without ECN to see
the net effect of LossPass.

Packet Loss Rate. Fig. 11 shows the packet loss rate of
small and large flows in the web search workload. For small
flows, LossPass reduces the packet loss rate by as much as
half. The range of packet loss rate of Droptail-2Q is between
0.16 and 0.22 percent whereas that of LossPass is within
0:09%
 0:10%. Droptail is similar to Droptail-2Q, but Drop-
tail-2Q results in slightly higher packet loss rate. Not sur-
prisingly, LossPass increases the packet loss rate of large
flows. For Droptail and Droptail-2Q, the average packet loss
rates of large flows across traffic loads are 0.22 and 0.20 per-
cent, respectively. In contrast, LossPass results in the aver-
age packet loss rate of 0.64 percent, which is � 2:90� higher

than that of Droptail-2Q. The above result indicates that
more large flow packets are dropped to avoid timeouts of
small flows in LossPass.

Impact on FCT. Fig. 12 shows the average FCT, which is the
result of packet loss rate and flow loss rate. Across the traffic
loads, LossPass outperforms Droptail-2Q in the average FCT
of small flows by 5.57� on average. This shows that reducing
the packet loss rate by half results in a significant improve-
ment in the FCT of small flows. For large flows, our scheme
performs worse than Droptail-2Q by 0.94� on average while
outperforming Droptail by 1.02� on average. This explains
why our scheme outperforms Droptail in the average FCT of
large flows although LossPass is expected to harm the FCT
of large flows. LossPass increases the FCT of large flows
slightly, but two-level SPQ compensates the loss.

5.2.3 Performance Under Different Environments

Impact of ECN.Wehave enabled ECN for performance evalu-
ation because LossPass is a complementary to ECN. There-
fore, one may wonder what if we disable ECN. Fig. 13 shows
the FCT results in the web search workload. We breakdown
the FCT results with 70 percent traffic load across different
flow sizes. We find that ECN-disabled LossPass shows com-
petitive performance to ECN-enabled LossPass except the
99th percentile FCT of small flows.We also see that ECN-dis-
abled LossPass still beats PIAS in the FCT of small flows
whose maximum performance gap is roughly 2:10� in the
99th percentile FCT. However, the average FCTs of overall,
medium, and large flows areworse than PIAS.

Impact of Transport Protocol. We now evaluate the perfor-
mance of LossPass using a different data center transport pro-
tocol. While we use DCTCP [5] for the transport protocol, we
here employ ECN* [11], another ECN-based TCP variant that
uses the standard TCP congestion avoidance algorithm with
instantaneous ECN marking. We use K=84 for line-rate
throughput. Fig. 14 shows the results. We breakdown the FCT
in the web search workloadwith 70 percent traffic load across
different flow sizes. We find that LossPass and LossPass with
ECN* shows similar performance. In addition, both LossPass
and LossPass with ECN* outperform ECN* significantly as

Fig. 9. [Simulation] FCTstatistics across different flow sizes in the web search workload.

Fig. 10. [Simulation] FCTstatistics across different flow sizes in the data mining workload.

2726 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 4, OCTOBER-DECEMBER 2022

Authorized licensed use limited to: Korea University. Downloaded on December 19,2022 at 00:59:04 UTC from IEEE Xplore. Restrictions apply.

expected. The results suggest that LossPass works well
regardless of transport protocols.

6 RELATED WORK

Microburst Absorption. There exist variants of ECN to absorb
microbursts [3], [12], [27], [28], [29]. CEDM [3] alleviates
throughput loss causedbyLSOusing an additional ECNmark-
ing threshold at dequeueing. However, the FCT of small flows
increases because senders decrease sending rates of large flows
more conservatively. BCC [12] adaptively uses two ECNmark-
ing schemes, per-port ECN marking for high throughput and
shared buffer ECN marking for low latency. However, BCC
achieves either low latency or high throughput at a time based
on the remaining shared buffer. S-ECN [27], QAECN [29],
MBECN [28] are also variants of ECN, which still have the
latency-throughput trade-off. LossPass is complementary to
the solutions when ECN is enabled because our solution space
is not packet marking but buffer sharing.MATCP [30] is a TCP
variant that can adjust congestion window size rapidly to
avoid packet losses of small flows. Specifically, MATCP
reduces congestion window size in proportion to the slope of
queue length evolution, making senders react to microbursts
quickly. MATCP is basically a transport protocol and LossPass
is a buffer sharing solution. Therefore, LossPass is complemen-
tary to MATCP. In a similar vein, LossPass is complementary
to existing end-host works that aim at reducing the FCT of
small flows (e.g., Qjump [31]) because LossPass adds packet
eviction functionality to the switch, not replaces existing switch
functionality like packet scheduling or modifies end-host net-
work stacks.

DT [22] and EDT [2] absorb microburst traffic by allow-
ing the port to occupy many buffer space. However, it
harms short-term fairness of buffer sharing among ports.
LossPass does not harm short-term fairness since we make
free buffer space on request. FAB [32] is a dynamic buffer
sharing solution that makes a difference in the maximum

queue length between small flows and large flows using a
weight parameter. Specifically, FAB assigns higher weights
to small flows than large flows so that small flows can
occupy more buffer space than large flows. FAB determines
the port buffer size based on flow information whereas
LossPass operates when there is no free buffer space for a
port, which means that both the works are orthogonal.

Packet Eviction. Packet eviction has been discussed in var-
ious network environments including the Internet, ATM-
enabled networks, and data center networks [33], [34], [35],
[36], [37]. For example, pFabric [37], a clean-slate approach
rearchitecting the whole packet transport, drops a packet
with the highest remaining flow size to approximate the
optimal flow scheduling for data center networks. Unfortu-
nately, it is hard to implement the above solution at line-
rate because of expensive complexity to find a victim
packet. pFabric OðlognÞ complexity with a binary tree. In
addition, pFabric requires non-trivial modifications on end-
hosts and switches with impractical assumptions, which
include prior knowledge of flow size, ms-scale RTO, NIC
modifications, a customized TCP, and millions of hardware
queue support. LossPass is distinguished from the existing
packet eviction works that our work addresses various
design challenges without impractical assumptions. In
addition, the problem space is different that we address
microburst absorption, not per-flow fairness for the Inter-
net [36] or rearchitecting the whole packet transport [37].

7 CONCLUSION

We studied how we can absorb microbursts as many as possi-
blewhilemaintaining line-rate throughput.WeproposedLoss-
Pass, a buffer sharing solution that passes packet loss to large
flows to avoid packet loss of small flows. To implement packet
eviction, we have addressed essential technical challenges like
reducing the search complexity and preventing multiple
packet evictions. We have implemented a LossPass prototype
and evaluated its performance through extensive testbed
experiments and large-scale simulations. Our evaluation
results demonstrated that LossPass can minimize the FCTs of
small flowswhile affecting large flows slightly.

Fig. 11. [Simulation] Packet loss rate. We can see that LossPass
reduces packet loss rate of small flows and increases that of large flows
as expected.

Fig. 12. [Simulation] The average FCT of small and large flows. We can
observe that LossPass significantly reduces the FCTof small flows while
degrading the FCTof large flows slightly.

Fig. 13. [Simulation] LossPass with/without ECN and PIAS. ECN-dis-
abled LossPass can offer the better performance than PIAS.

Fig. 14. [Simulation] FCTsummary for LossPass, LossPass with/without
ECN*, and ECN*. LossPass maintains similar performance regardless
of the transport protocol.

KIM AND LEE: LOSSPASS: ABSORBING MICROBURSTS BY PACKET EVICTION FOR DATA CENTER NETWORKS 2727

Authorized licensed use limited to: Korea University. Downloaded on December 19,2022 at 00:59:04 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENT

This work was supported in part by the National Research
Foundation of Korea (NRF) funded by the Ministry of Sci-
ence and ICT under Grant 2019R1A2C2088812 the Next-
Generation Information Computing Development Program
through the National Research Foundation of Korea (NRF)
funded by the Ministry of Science and ICT under Grant
2017M3C4A7083676. A preliminary version of this article
appears in [1] as a letter.

REFERENCES

[1] G. Kim and W. Lee, “Absorbing microbursts without headroom
for data center networks,” IEEE Commun. Lett., vol. 23, no. 5,
pp. 806–809, May 2019.

[2] D. Shan, W. Jiang, and F. Ren, “Absorbing micro-burst traffic by
enhancing dynamic threshold policy of data center switches,” in
Proc. IEEE Conf. Comput. Commun., 2015, pp. 118–126.

[3] D. Shan and F. Ren, “Improving ECN marking scheme with
micro-burst traffic in data center networks,” in Proc. IEEE Conf.
Comput. Commun., 2017, pp. 1–9.

[4] Q. Zhang, V. Liu, H. Zeng, and A. Krishnamurthy, “High-resolu-
tion measurement of data center microbursts,” in Proc. ACM Inter-
net Meas. Conf., 2017, pp. 78–85.

[5] M. Alizadeh et al., “Data center TCP (DCTCP),” in Proc. ACM SIG-
COMM Conf., 2010, pp. 63–74.

[6] Y. Lu et al., “One more queue is enough: Minimizing flow comple-
tion time with explicit priority notification,” in Proc. IEEE Conf.
Comput. Commun., 2017, pp. 1–9.

[7] C. Villamizar and C. Song, “High performance TCP in ANSNET,”
SIGCOMMComput. Commun.Rev., vol. 24, no. 5, pp. 45–60, Oct. 1994.

[8] A. Greenberg et al., “VL2: A scalable and flexible data center
network,” in Proc. ACM SIGCOMM Conf. Data Commun., 2009,
pp. 51–62.

[9] W. Bai, K. Chen, H. Wang, L. Chen, D. Han, and C. Tian,
“Information-agnostic flow scheduling for commodity data cen-
ters,” in Proc. USENIX Conf. Netw. Syst. Des. Implementation, 2015,
pp. 455–468.

[10] The network simulator NS-2, 2020. [Online]. Available: http://
www.isi.edu/nsnam/ns/

[11] H. Wu, J. Ju, G. Lu, C. Guo, Y. Xiong, and Y. Zhang, “Tuning ECN
for data center networks,” in Proc. ACM 8th Int. Conf. Emerg. Netw.
Experiments Technol., 2012, pp. 25–36.

[12] W. Bai, S. Hu, K. Chen, K. Tan, and Y. Xiong, “One more config is
enough: Saving (DC)TCP for high-speed extremely shallow-buff-
ered datacenters,” in Proc. IEEE Conf. Comput. Commun., 2020,
pp. 2007–2016.

[13] net-qdisc-hhf: Heavy-hitter filter (HHF) qdisc, 2013. [Online].
Available: https://lwn.net/Articles/577208

[14] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside
the social network’s (datacenter) network,” in Proc. ACM Conf.
Special Interest Group Data Commun., 2015, pp. 123–137.

[15] M. Park, S. Sohn, K. Kwon, and T. T. Kwon, “MaxPass: Credit-
based multipath transmission for load balancing in data centers,”
J. Commun. Netw., vol. 21, no. 6, pp. 558–568, 2019.

[16] G. Kim and W. Lee, “Protocol-independent service queue isola-
tion for multi-queue data centers,” in Proc. IEEE Int. Conf. Distrib.
Comput. Syst., 2020.

[17] G. Judd, “Attaining the promise and avoiding the pitfalls of TCP
in the datacenter,” in Proc. USENIX Conf. Netw. Syst. Des. Imple-
mentation, 2015, pp. 145–157.

[18] H. Xu and B. Li, “RepFlow: Minimizing flow completion times
with replicated flows in data centers,” in Proc. IEEE Conf. Comput.
Commun., 2014, pp. 1581–1589.

[19] Cisco Systems, “Intelligent buffer management on cisco nexus
9000 series switches,” White Paper C11-738488-02, San Jose, CA,
USA, 2017.

[20] S. Hu, W. Bai, B. Qiao, K. Chen, and K. Tan, “Augmenting proac-
tive congestion control with Aeolus,” in Proc. 2nd Asia-Pacific
Workshop Netw., 2018, pp. 22–28.

[21] Arista Networks, “Arista 7050x3 series switch architecture,”
White Paper, 02-0077-08, Santa Clara, CA, USA, 2020.

[22] A. K. Choudhury and E. L. Hahne, “Dynamic queue length
thresholds for shared-memory packet switches,” IEEE/ACM
Trans. Netw., vol. 6, no. 2, pp. 130–140, Apr 1998.

[23] Tofino programmable switch, 2020. [Online]. Available: https://
www.barefootnetworks.com/

[24] P. Bosshart et al., “Forwarding metamorphosis: Fast programma-
ble match-action processing in hardware for SDN,” in Proc. ACM
SIGCOMM Conf., 2013, pp. 99–110.

[25] W. Bai, L. Chen, K. Chen, and H. Wu, “Enabling ECN in multi-ser-
vice multi-queue data centers,” in Proc. USENIX Conf. Netw. Syst.
Des. Implementation, 2016, pp. 537–549.

[26] V. Vasudevan et al., “Safe and effective fine-grained TCP retrans-
missions for datacenter communication,” in Proc. ACM SIG-
COMMConf. Data Commun., 2009, pp. 303–314.

[27] D. Shan, F. Ren, P. Cheng, R. Shu, and C. Guo, “Micro-burst in
data centers: Observations, analysis, and mitigations,” in Proc.
IEEE 26th Int. Conf. Netw. Protocols, 2018, pp. 88–98.

[28] K. Kang et al., “MBECN: Enabling ECN with micro-burst traffic in
multi-queue data center,” in Proc. IEEE Int. Conf. Cluster Comput.,
2019, pp. 1–12.

[29] K. Kang, J. Zhang, J. Jin, D. Shen, R. Xiong, and J. Luo, “QAECN:
Dynamically tuning ECN threshold with micro-burst in multi-
queue data centers,” in Proc. IEEE 23rd Int. Conf. Comput. Sup-
ported Cooperative Work Des., 2019, pp. 398–403.

[30] D. Shan, F. Ren, P. Cheng, R. Shu, and C. Guo, “Observing and
mitigating micro-burst traffic in data center networks,” IEEE/
ACM Trans. Netw., vol. 28, no. 1, pp. 98–111, Feb. 2020.

[31] M. P. Grosvenor et al., “Queues don’t matter when you can JUMP
them!” in Proc. USENIX Conf. Netw. Syst. Des. Implementation,
2015, pp. 1–14.

[32] M. Apostolaki, L. Vanbever, and M. Ghobadi, “FAB: Toward
flow-aware buffer sharing on programmable switches,” in Proc.
Workshop Buffer Sizing, 2019, pp. 1–6. [Online]. Available: https://
doi.org/10.1145/3375235.3375237

[33] A. Thareja and A. Agrawala, “On the design of optimal policy for
sharing finite buffers,” IEEE Trans. Commun., vol. 32, no. 6,
pp. 737–740, Jun. 1984.

[34] A. K. Choudhury and E. L. Hahne, “Space priority management
in a shared memory ATM switch,” in Proc. IEEE Global Telecom-
mun. Conf., 1993, pp. 1375–1383.

[35] I. Cidon, L. Georgiadis, R. Guerin, and A. Khamisy, “Optimal
buffer sharing,” IEEE J. Sel. Areas Commun., vol. 13, no. 7,
pp. 1229–1240, Sep. 1995.

[36] D. D. D. Clark et al., “Recommendations on queue management and
congestion avoidance in the internet,” RFC 2309, 1998, [Online]. Avail-
able: https://rfc-editor.org/rfc/rfc2309.txt, doi: 10.17487/RFC2309.

[37] M. Alizadeh et al., “pFabric: Minimal near-optimal datacenter
transport,” in Proc. ACM SIGCOMM Conf., 2013, pp. 435–446.

Gyuyeong Kim (Member, IEEE) received the BS
and PhD degrees in computer science from
Korea University, Seoul, South Korea, in 2012
and 2020, respectively. He is currently a research
professor with Future Network Center, Korea Uni-
versity. His research interests include networked
systems, cloud computing systems, and pro-
grammable hardware.

Wonjun Lee (Fellow, IEEE) received the BS and
MS degrees in computer engineering from Seoul
National University, Seoul, Republic of Korea, in
1989 and 1991, respectively, the MS degree in
computer science from the University of Mary-
land, College Park, MD, USA, in 1996, and the
PhD degree in computer science and engineering
from the University of Minnesota, Minneapolis,
MN, USA, in 1999. In 2002, he joined the faculty
of Korea University, Seoul, Republic of Korea,
where he is currently a professor with the School

of Cybersecurity. He has authored or co-authored over 220 papers in ref-
ereed international journals and conferences. His research interests
include communication and network protocols, optimization techniques
in wireless communication and networking, security and privacy in
mobile computing, and RF-powered computing and networking. He has
served on the TPC and/or organizing committee member of IEEE INFO-
COM from 2008 to 2021, PC Vice Chair of IEEE ICDCS 2019, and the
ACM MobiHoc from 2008 to 2009, and over 130 international conferen-
ces.

2728 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 4, OCTOBER-DECEMBER 2022

Authorized licensed use limited to: Korea University. Downloaded on December 19,2022 at 00:59:04 UTC from IEEE Xplore. Restrictions apply.

http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/
https://lwn.net/Articles/577208
https://www.barefootnetworks.com/
https://www.barefootnetworks.com/
https://doi.org/10.1145/3375235.3375237
https://doi.org/10.1145/3375235.3375237
https://rfc-editor.org/rfc/rfc2309.txt
http://dx.doi.org/10.17487/RFC2309

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

