
A Memory Pool Allocator for eBPF Applications

Gyuyeong Kim
Sungshin Women’s University

Seoul, Republic of Korea

gykim@sungshin.ac.kr

Dongsu Han
KAIST

Daejeon, Republic of Korea

dhan.ee@kaist.ac.kr

ABSTRACT

eBPF enables high-performance kernel-level execution by elimi-

nating networking stack traversal and context switching. Despite

the advantages, eBPF applications face strict memorymanagement

constraints due to the eBPF verifier requirements that mandate

static memory allocation. This limitation imposes a fundamental

tradeoff between application performance and memory efficiency,

ultimately restricting the potential of eBPF.We present Kerby, a dy-

namic memory pool allocator for eBPF that enables eBPF applica-

tions to dynamically manage pre-allocated memory by represent-

ing variable-length data as collections of fixed-size blocks. This al-

lows applications to increase the amount of kernel-resident data

while minimizing internal fragmentation. Our preliminary eval-

uation with key-value store implementations demonstrates that

Kerby achieves significant improvements in both memory utiliza-

tion and throughput.

CCS CONCEPTS

• Software and its engineering → Memory management; •

Networks → In-network processing;

KEYWORDS

eBPF, memory pooling, operating systems

ACM Reference Format:

Gyuyeong Kim and Dongsu Han. 2025. A Memory Pool Allocator for eBPF

Applications. In 3rdWorkshop on eBPF and Kernel Extensions (eBPF ’25), Sep-

tember 8–11, 2025, Coimbra, Portugal. ACM, New York, NY, USA, 3 pages.

https://doi.org/10.1145/3748355.3748370

1 PROBLEM AND MOTIVATION

Extended Berkeley Packet Filter (eBPF) [1] has emerged as a power-

ful framework for extending OS kernel functionality without modi-

fications [6], enabling high-performance applications through kernel-

level execution. By offloading application logic to the kernel, eBPF

applications can bypass networking stack traversal and eliminate

user-kernel context switching. This approach has demonstrated

significant benefits across various domains [13], including key-value

stores [9, 15, 17], lock and log managers [17], consensus proto-

cols [16], and sketch [11].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of thisworkmust be honored.
For all other uses, contact the owner/author(s).

eBPF ’25, September 8–11, 2025, Coimbra, Portugal

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2084-0/25/09.
https://doi.org/10.1145/3748355.3748370

Despite its potential, the strict constraints of the eBPF verifier [14]

limit the efficiency of eBPF applications. In particular, eBPF applica-

tions are constrained to use static memory allocation because the

eBPF program must be verified statically before execution. This

limitation creates a fundamental trade-off between performance

andmemory efficiency, especially for applications handling variable-

length data.

This trade-off is clearly illustrated in existing in-kernel key-value

stores [9, 17], which are restricted to fixed-size items because BPF

map entry slots must have predetermined sizes. System designers

face an unappealing choice: either allocate large slots to maximize

in-kernel data processing but risk substantial internal fragmenta-

tion with small items, or use smaller slots to reduce fragmentation

but force most data into user space, sacrificing performance. This

dilemma leads us to ask: how can we achieve high performance and

memory efficiency simultaneously for eBPF applications?

2 KERBY APPROACH

Our goal is to make eBPF applications achieve high performance

and memory efficiency at the same time. Existing OS memory al-

locators like the buddy allocator or the slab allocator cannot be

applied since the number of entries in BPF maps cannot be rebal-

anced. To achieve the goal, we propose Kerby, a memory pool allo-

cator for eBPF. The idea is to pool memory space for eBPF applica-

tions and manage it dynamically. Kerby divides the pre-allocated

memory pool into multiple fixed-size blocks, and these blocks are

dynamically combined to represent variable-length data. For exam-

ple, a 1024-B object uses eight 128-B blocks.

The memory pool allocation of Kerby improves memory effi-

ciency for kernel-resident data, enabling eBPF applications to pro-

cess more requests at higher performance. By limiting internal

fragmentation to only the last allocated block per object, it min-

imizes memory waste. It also maintains mainline kernel compat-

ibility by operating within eBPF verifier constraints. For latency-

sensitive applications, Kerby offers an ideal solution that combines

the flexibility of dynamic memory allocation with low operational

overhead.

Challenges. A key challenge is to track the list of free blocks, es-

pecially reclaimed ones, as these blocks should be reused. Straw-

man solutions include having a queue or a bitmap-based list for re-

claimed blocks. However, these solutions complicate making write

operations atomic. In many applications, we need to lock a data en-

try to handle concurrent requests to the same entry. Unfortunately,

the eBPF verifier does not allow BPF programs to call functions

while holding a lock, though we need to call BPF helper functions

to update the free block list during a write operation.

Design. To address this, we adopt a counter-intuitive approach:

we do not maintain a free block list at all. Instead, we use each

block index only once by ensuring the block index ismonotonically

https://doi.org/10.1145/3748355.3748370
https://doi.org/10.1145/3748355.3748370

eBPF ’25, September 8–11, 2025, Coimbra, Portugal Gyuyeong Kim and Dongsu Han

��������	

�������
�

�����

�����

�����

�����

��������
�����	���

������
����

�� �
�
����

!�"�
�
����

�
���

#	$��������%&���#��

#	$�'(�)���

�����������	

*	
% ��

+

���	
�������%�' BPF_MAP_TYPE_HASH

Figure 1: Example of read operations in Kerby.

increasing. The block index is 64 bits wide, providing a large upper

bound of 264 − 1. The memory pool computes a hash of the block

index to access the block entries, keeping the effective indexwithin

the memory pool bounds. Kerby consists of three core components

as follows.

1) Memory allocation map translates each opaque ID to its cor-

responding block indices in the pool. The opaque ID represents an

object identifier, such as a key, object sequence number, or item

index. The map can be a BPF hash map (BPF_MAP_TYPE_HASH), a

BPF array map (BPF_MAP_TYPE_ARRAY), and per-CPU maps (e.g.,

BPF_MAP_TYPE_PERCPU_ARRAY), depending on the required ID size

of the target applications. For example, the key-value store should

use a BPF hash map since item keys are typically larger than 4

bytes, which is the maximum identifier size supported by a BPF ar-

raymap.We can configure the number of indices and the block size

depending on the applications. 2) Memory pool is a pre-allocated

memory divided into fixed-size blocks. We use a BPF hash map

because it has an internal collision resolution mechanism, and its

hash index ensures each block index is mapped to a single block

only. 3) Index allocator is a BPF array map with a single entry

that represents a monotonically-increasing block index. We use

the __atomic_fetch_add instruction to issue new block indices

atomically, eliminating concurrency issues.

Kerby supports concurrent (de)allocation of variable-size objects

in the following way. When allocating a new object, Kerby allo-

cates the desired number of blocks from the memory pool using

indices retrieved from the index allocator. Kerby stores the ordered

list of indices in the memory allocation map for the opaque ID,

which is the data handle for the application. When an object is

deallocated, Kerby first removes the object entry from the alloca-

tion map. After that, Kerby clears each block used by the object in

the memory pool, using eBPF delete. Kerby also supports object re-

sizing by only (de)allocating blocks in the memory pool. Figure 1

shows an example of how the data BFE is reconstructed. 0 is the

null index.

Kerby-KV. To demonstrate the applicability of Kerby, we imple-

ment Kerby-KV, an in-kernel key-value store built on top of Kerby.

The opaque ID in the allocation map is the item key, and the blocks

in the memory pool are a part of the item value. Kerby-KV stores

metadata like the value length and a spinlock for each key in the

allocation map. Kerby-KV supports keys up to 128 bytes. The al-

location map contains up to eight indices to 128-B blocks in the

memory pool. Note that the supported item size is configurable.

Preliminary results. To demonstrate the efficiency of Kerby, we

compare Kerby-KV with the vanilla Linux and DINT [17], which

relies on static memory allocation. The value slot size is set to 128

bytes to ensure 100% memory efficiency for DINT. Experiments

Uniform Zipf-0.9 Zipf-0.95 Zipf-0.99

Key access distributions

0
1
2
3
4
5
6
7
8
9

10
11

T
h

ro
u

g
h

p
u

t
(M

R
P

S
) Vanilla DINT Kerby-KV

Figure 2: Throughput with different skewness.

are performed with 8 clients and 1 server with Linux kernel 6.8.0

under various key access distributions. We measure read through-

put using a mix of 75% 128-B and 25% 1024-B values. All keys are 8

bytes to match the supported key size by DINT.Wemodified DINT

to allow it to handle oversized items in user-space.

Figure 2 shows the results. We can see that Kerby-KV outper-

forms Vanilla and DINT significantly. This is because DINT han-

dles oversized 1024-B items in the user space after experiencing

burdensome kernel stack overheads, whereas Kerby-KV handles

both 128-B and 1024-B items fully in the kernel with dynamicmem-

ory pool allocation, achieving high performance. The reason why

the performance of DINT increases as the skewness grows is that

128-B items are accessed more.

3 DISCUSSION AND RELATED WORK

Usecases. Kerby can benefit applications beyond key-value stores,

especially those handling variable-length data. For example, log

managers also benefit from Kerby by supporting variable-length

logs, unlike existing eBPF implementations restricted to fixed-sized

entries [17]. This flexibility proves valuable in distributed transac-

tions where log entry sizes vary with complexity.

Alternative approaches. There are a few recent efforts for dy-

namic memory allocation in eBPF, but they provide only limited

support. The bpf_obj_new [4] enables the creation of objects at

run time but only for fixed-size objects defined at compile-time,

making it hard to handle variable-length data. BPF Arena [2, 3] al-

lows memory sharing between BPF programs and userspace appli-

cations, with memory allocated on demand. However, it currently

cannot allocate/deallocate memory at the XDP hook [7, 10] since

it requires a sleepable context [5] while the XDP runs in an atomic

(i.e., non-sleepable) context. It may cause internal fragmentation

as it allocates memory in pages (i.e., 4 KB). It also supports mem-

ory only up to 4 GB. KFlex [8] is a kernel extension framework

that includes extension heaps for dynamic allocation, but its mem-

ory feature is hard to integrate with the mainline kernel due to

different safety check principles [12].

ACKNOWLEDGEMENT

Wewould like to thank the anonymous reviewers for their insight-

ful comments and constructive feedback. This research was spon-

sored by the National Research Foundation of Korea (NRF) grants

funded by the Ministry of Science and ICT (No. RS-2025-00522990

and RS-2024-00340099). Gyuyeong Kim is the corresponding au-

thor.

A Memory Pool Allocator for eBPF Applications eBPF ’25, September 8–11, 2025, Coimbra, Portugal

REFERENCES
[1] 2024. eBPF. https://ebpf.io/. (2024).

[2] 2024. A proposal for shared memory in BPF programs. https://lwn.net/Articles/

961941/. (2024).

[3] 2025. A look at what’s possible with BPF arenas. https://lwn.net/SubscriberLink/

1019885/7aebede8a200949b/. (2025).

[4] 2025. SCX eBPF macro bpf_obj_new. https://docs.ebpf.io/ebpf-library/scx/bpf_

obj_new/. (2025).

[5] 2028. Atomic context and kernel API design. https://lwn.net/Articles/274695/.

(2028).

[6] Theophilus A. Benson, Prashanth Kannan, Prankur Gupta, Balasubramanian

Madhavan, Kumar Saurabh Arora, Jie Meng, Martin Lau, Abhishek Dhamija,

Rajiv Krishnamurthy, Srikanth Sundaresan, Neil Spring, and Ying Zhang. 2024.

NetEdit: AnOrchestration Platform for eBPFNetwork Functions at Scale. In Proc.

of ACM SIGCOMM. Association for Computing Machinery, New York, NY, USA,

721–734. https://doi.org/10.1145/3651890.3672227

[7] Zhongjie Chen, Qingkai Meng, ChonLam Lao, Yifan Liu, Fengyuan Ren, Minlan

Yu, and Yang Zhou. 2025. eTran: Extensible Kernel Transport with eBPF. In Proc.

of USENIX NSDI. USENIX Association.

[8] Kumar Kartikeya Dwivedi, Rishabh Iyer, and Sanidhya Kashyap. 2024. Fast,

Flexible, and Practical Kernel Extensions. In Proc. of ACM SOSP. Association for

Computing Machinery, New York, NY, USA, 249–264. https://doi.org/10.1145/

3694715.3695950

[9] YoannGhigoff, Julien Sopena, Kahina Lazri, Antoine Blin, andGillesMuller. 2021.

BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Pro-

cessing. In Proc. of USENIX NSDI. USENIX Association, 487–501.

[10] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann, John

Fastabend, Tom Herbert, David Ahern, and David Miller. 2018. The eXpress

data path: fast programmable packet processing in the operating system kernel.

In Proc. of ACM CoNEXT. Association for Computing Machinery, New York, NY,

USA, 54–66. https://doi.org/10.1145/3281411.3281443

[11] Sebastiano Miano, Xiaoqi Chen, Ran Ben Basat, and Gianni Antichi. 2023. Fast

In-kernel Traffic Sketching in eBPF. SIGCOMM Comput. Commun. Rev. 53, 1

(April 2023), 3–13.

[12] Margo I. Seltzer, Yasuhiro Endo, Christopher Small, and Keith A. Smith. 1996.

Dealing with disaster: surviving misbehaved kernel extensions. In Proc. of

USENIX OSDI. Association for Computing Machinery, New York, NY, USA,

213–227. https://doi.org/10.1145/238721.238779

[13] Farbod Shahinfar, Sebastiano Miano, Giuseppe Siracusano, Roberto Bifulco, Au-

rojit Panda, and Gianni Antichi. 2023. Automatic Kernel Offload Using BPF. In

Proc. of ACMHotOS. Association for ComputingMachinery, New York, NY, USA,

143–149.

[14] Hao Sun and Zhendong Su. 2024. Validating the eBPF Verifier via State Embed-

ding. In Proc. of USENIX OSDI. USENIX Association, Santa Clara, CA, 615–628.

https://www.usenix.org/conference/osdi24/presentation/sun-hao

[15] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas, Jeffrey Tao, Evan

Mesterhazy, Michael Makris, Junfeng Yang, Amy Tai, Ryan Stutsman, and Asaf

Cidon. 2022. XRP: In-Kernel Storage Functions with eBPF. In Proc. of USENIX

OSDI. USENIX Association, Carlsbad, CA, 375–393.

[16] Yang Zhou, Zezhou Wang, Sowmya Dharanipragada, and Minlan Yu. 2023.

Electrode: Accelerating Distributed Protocols with eBPF. In Proc. of USENIX

NSDI. USENIX Association, Boston, MA, 1391–1407. https://www.usenix.org/

conference/nsdi23/presentation/zhou

[17] Yang Zhou, Xingyu Xiang, Matthew Kiley, Sowmya Dharanipragada, and Min-

lan Yu. 2024. DINT: Fast In-Kernel Distributed Transactions with eBPF. In Proc.

of USENIX NSDI. USENIX Association, Santa Clara, CA, 401–417.

https://ebpf.io/
https://lwn.net/Articles/961941/
https://lwn.net/Articles/961941/
https://lwn.net/SubscriberLink/1019885/7aebede8a200949b/
https://lwn.net/SubscriberLink/1019885/7aebede8a200949b/
https://docs.ebpf.io/ebpf-library/scx/bpf_obj_new/
https://docs.ebpf.io/ebpf-library/scx/bpf_obj_new/
https://lwn.net/Articles/274695/
https://doi.org/10.1145/3651890.3672227
https://doi.org/10.1145/3694715.3695950
https://doi.org/10.1145/3694715.3695950
https://doi.org/10.1145/3281411.3281443
https://doi.org/10.1145/238721.238779
https://www.usenix.org/conference/osdi24/presentation/sun-hao
https://www.usenix.org/conference/nsdi23/presentation/zhou
https://www.usenix.org/conference/nsdi23/presentation/zhou

	Abstract
	1 Problem and Motivation
	2 Kerby Approach
	3 Discussion and Related work
	References

