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Abstract—Switches in cloud data centers support multiple service queues per port to provide differentiated network performance

among different traffic classes. To isolate service queues, recent solutions leverage the power of Explicit Congestion Notification

(ECN). However, this causes a fundamental dependency on ECN-based transport protocols, making it hard to use generic transport

protocols. To this end, we design DynaQ, a protocol-independent multi-queue management solution that enables service queue

isolation with generic transport protocols. The key idea of DynaQ is to adjust the packet dropping threshold of service queues

dynamically. Specifically, DynaQ allows a service queue to occupy free buffer space but prevents the queue from hurting other active

queues. Our solution requires only a few additional clock cycles to implement on hardware. To evaluate DynaQ comprehensively, we

conduct a series of testbed experiments and large-scale simulations. Our evaluation results show that, compared to alternative

schemes, DynaQ is the only solution that achieves work-conserving weighted fair sharing and low latency without protocol dependency.

Index Terms—Data center networks, service queue isolation, buffer management

Ç

1 INTRODUCTION

DATA centers are shared by many cloud services having
diverse network performance requirements. To provide

differentiated performance, the operator groups services
into different traffic classes, and maps the classes into ser-
vice queues in a switch port [2], [3]. The switch enforces net-
work policy across the queues through packet schedulers
like strict priority queueing (SPQ) and weighted round-
robin (WRR). Meanwhile, the port buffer is shared among
service queues in a best-effort manner. In this regime, it is
difficult to isolate service queues because an aggressive
queue with many flows can monopolize the packet buffer
regardless of the port buffer size. If a queue cannot occupy
enough buffer space, it cannot achieve its fair share rate.

Recent solutions [2], [3], [4] leverage Explicit Congestion
Notification (ECN), which maintains the maximum buffer
occupancy around the ECN marking threshold K. Unfortu-
nately, the existing solutions have a fundamental depen-
dency on ECN-based transport protocols since ECN
requires cooperation between end-hosts and switches. This
protocol dependency is undesirable because the end-hosts
cannot use generic transport protocols. The recent advance
in transport protocols shows that non-ECN protocols can
outperform ECN-based protocols using different congestion
signals (e.g., In-band network telemetry [5], credit [6], and
network delay [7], [8]). These works are motivated by the
drawbacks of ECN like coarse-grained signaling and slow
convergence time. Furthermore, in multi-tenant

environments like public clouds, it is hard to enforce a spe-
cific transport protocol to virtual machines (VMs) and bare-
metal (BM) servers because tenants own the network stack.

In this context, we ask the following question: how to iso-
late service queues in switch ports without dependency on trans-
port protocols? We may modify the ECN-based schemes to
drop packets when the ECN marking conditions are met.
However, we find that such a simple change is not enough.
MQ-ECN [2] still does not support generic packet schedu-
lers like SPQ, which is crucial to latency-sensitive applica-
tions. TCN [3] requires dropping dequeued packets, and
this degrades throughput by causing idle time on the link.
Due to per-queue ECN marking, PMSB [4] works like static
per-queue buffer limit (PQL) [9]. However, PQL wastes
bandwidth when few queues are active because a single
queue cannot occupy the buffer larger than the assigned
quota, which is generally less than the Bandwidth-Delay-
Product (BDP) in shallow-buffered switches. Assigning a
large buffer size does not help as well since the aggressive
queue eventually exhausts the available buffer. It can also
harm per-port fairness by occupying excessive buffer space.

In this paper, we present DynaQ, a protocol-independent
multi-queue management scheme. DynaQ enables service
queue isolation with generic transport protocols. The best-
effort scheme and PQL provide us the following design
guideline. First, to be work-conserving, a service queue
should be able to occupy the buffer larger than or equal to
the BDP. Second, to achieve weighted fair sharing, the
switch should guarantee the buffer as much as the weighted
BDP to a service queue. Third, to achieve the requirements
simultaneously, the port buffer should be shared dynami-
cally. Based on the guideline, DynaQ adjusts the packet
dropping threshold of service queues dynamically so that a
queue can occupy the buffer up to the port buffer size but
does not take the buffer of unsatisfied active queues.
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DynaQ is simple and can be implemented on hardware
inexpensively with up to 7 clock cycles. The overhead is rel-
atively small because switch ASICs require at least hun-
dreds of clock cycles to process a packet. For example,
Broadcom Trident 3 ASIC consumes at least 800 clock cycles
to process a packet. We also discuss how DynaQ can be
implemented on a programmable switching chip like Bare-
foot Tofino [10]. We implement a software prototype of
DynaQ as a Linux qdisc module to compare DynaQ with
various solutions.

We build a small-scale testbedwith 5 servers connected to
a server-emulated switch supporting 8� 1GbE ports with
two Intel I350-T4 NICs. We conduct extensive experiments
to validate the efficiency of DynaQ. Our experimental results
show that DynaQ provides work-conserving weighted fair
sharing regardless of the number of active queues, the num-
ber of competing flows, and different per-queue weights.
Using multiple end-hosts with different transport protocols,
we show that DynaQ works well with generic protocols as
well. In addition, DynaQ outperforms compared schemes in
the FCT for small and large flows. For example, DynaQ beats
the best-effort by up to 8:40� in the 99th percentile FCT for
small flows. Compared to TCN [3], DynaQ achieves the bet-
ter average FCT for large flows by up to 1:99� . To comple-
ment the small-scale testbed experiments, we also perform
large-scale simulations using ns-2 [11]. With link capacities
of 10Gbps and 100Gbps, we demonstrate that DynaQ can
preserve work-conserving weighted fair sharing in high-
speed data center networks.

In summary, we make the following contributions:

� We design DynaQ, a protocol-independent multi-
queue management solution that enables service
queue isolation with generic transport protocols.

� We discuss the hardware implementation of DynaQ
and present a software prototype of DynaQ.

� We conduct extensive experiments and simulations
to demonstrate that DynaQ ensures work-conserving
weighted fair sharing and low latency simulta-
neously without protocol dependency.

2 BACKGROUND AND MOTIVATION

2.1 Impact of Buffers on Bandwidth Sharing

Modern cloud services have diverse network performance
requirements. For example, web search requires low latency
and data backup demands high throughput. To provide dif-
ferentiated network performance based on network policy,
the operator often leverages multiple service queues in a
switch port. In multi-queue environments, the operator clas-
sifies services into different traffic classes. These classes are
mapped into different service queues, and the queues are
scheduled by weighted fair packet schedulers like WRR
and deficit round robin (DRR) [2], [4], [12]. The operator
also uses SPQ to prioritize latency-sensitive flows [3].
Shared SPQ queues have a higher priority and the other
dedicated queues with fair schedulers have the lowest
priority.

Unfortunately, network policy can be violated in spite of
packet scheduling. To saturate the weighted bottleneck
capacity, queue i requires the weighted BDP that

WBDPi ¼ C �RTT � wiP
w
; (1)

where RTT is the base RTT, C and wi denote the link capac-
ity and the weight of queue i, respectively. However,
because the port buffer is shared among service queues in a
best-effort manner, a service queue may not obtain enough
buffer space as much as the weighted BDP due to aggres-
sive service queues. To show this, we conduct an experi-
ment on a small-scale testbed consisting of 5 servers
connected to a 1GbE server-emulated switch having an 85
KB of buffer per port. In the switch, we configure DRR with
equal weight. We have one receiver and 4 senders. Three
senders are mapped into service queue 2 while the other
sender belongs to service queue 1. We start 8 flows from
each of the senders at the same time and measure per-queue
throughput for 60 seconds every 0.5 seconds. We also record
every queue length evolution and obtain 1K sequential sam-
ples at a random time. Fig. 1 shows the results. Since the
queues have the same weight, bandwidth should be shared
equally. However, queue 1 cannot achieve its fair share rate
because queue 1 cannot occupy the buffer larger than
WBDP 1 due to a large arrival rate of queue 2.

2.2 Why Protocol Dependency Matters?

Existing solutions [2], [3], [4] leverage ECN to isolate service
queues. The solutions have an underlying assumption: all
end-hosts use ECN-based transport protocols. This is
because ECN requires both ECN-enabled end-hosts and
switches. The assumption implies that the existing solutions
have a dependency on ECN-based transport protocols.

This is undesirable because the end-host network stack
cannot adapt to the advance in transport protocols. We
have witnessed the emergence of many non-ECN transport
protocols, which have better performance than ECN-based
transport protocols. For example, HPCC [5] leverages in-
band network telemetry available in emerging switch ASICs
because ECN does not know how to adjust sending rates
exactly and causes a trade-off between latency and through-
put with the ECN marking threshold [13]. ExpressPass [6]
shows that credit packets are better congestion signals than
ECN in terms of fairness and convergence time. There also
exist delay-based protocols like DX [8] and TIMELY [7],
which are motivated by that ECN cannot inform the extent
of congestion quickly. We believe that transport protocols
will continue to evolve and their congestion signals will not
be limited to ECN. The assumption also does not hold in
many multi-tenant environments like public clouds. VMs
and BM servers are the major components in cloud data
centers, and their network stack is owned by tenants, not

Fig. 1. [Experiment] Violated fair sharing by unfair buffer occupancy.

KIM AND LEE: DYNAQ: ENABLING PROTOCOL-INDEPENDENT SERVICE QUEUE ISOLATION IN CLOUD DATA CENTERS 705

Authorized licensed use limited to: Korea University. Downloaded on May 18,2023 at 05:27:30 UTC from IEEE Xplore.  Restrictions apply. 



the network operator. Therefore, it is hard to enforce a spe-
cific transport protocol for all end-hosts.

2.3 Analysis of ECN-Based Schemes

One may wonder whether modifying the schemes to drop
packets instead of ECN marking can solve the problem.
However, we find that simple changes are not enough for
the following reasons.

MQ-ECN [2] is the first work that addresses the service
queue isolation problem caused by unfair buffer sharing.
MQ-ECN [2] determines a ECNmarking threshold of queue
i as following that Ki ¼ minðquantumi

Tround
; CÞ �RTT � � where

quantumi is the weight/quantum of queue i and � is a coef-
ficient for transport protocols. For example, theoretically,
� ¼ 1 for ECN* [14] and � ¼ 0:17 for DCTCP [15]. Tround

indicates the estimated total time to serve all queues once.
The key drawback of MQ-ECN is that the solution relies on
the concept of ”round” with Tround. This means that MQ-
ECN does not support packet schedulers like SPQ. Support-
ing SPQ is crucial to latency-sensitive services since it can
accelerate small flows. Therefore, even we change the
scheme to drop packets, the solution does not achieve our
design goals since it fails to provide low latency.

TCN [3] uses the packet sojourn time as the thresholdmet-
ric instead of queue length to support generic packet schedu-
lers. Since the packet sojourn time can be calculated after
passing through the queue, the solution performs dequeue
marking. The standard ECN marking threshold is given by
T ¼ RTT � �. If we change TCN to drop the packet when the
packet sojourn time exceeds T , we should drop the just
dequeued packet. However, packet dropping at dequeue
causes idle time on the link. This seriously degrades the
effective throughput. In addition, dropping the buffered
packet increases the FCT as much as the packet sojourn time
in addition to the retransmission timeout (RTO).

PMSB [4] provides both generic packet schedulers and
early congestion notification, which MQ-ECN and TCN do
not support, respectively. PMSB only marks packets when
per-port ECN marking and per-queue ECN marking condi-
tions are met at the same time where the port ECN marking
threshold is given byK ¼ C �RTT � �. The per-queue ECN
marking threshold for queue i is given by Ki ¼ wiP

w
C �

RTT � �. SinceKi � K, the dropping version of PMSB is sim-
ilar to PQL,which is supported in some production switches.

PQL assigns a static buffer size to a service queue. Therefore,
each queue can enjoy its fair share regardless of other queues.
However, PQL is not work-conserving because the amount of
buffer that a single queue can occupy is limited to the assigned
quota. Therefore, when few queues are active, the link capacity
can be underutilized since the aggregate buffer occupancy can
be less than the BDP. One might argue that assigning a buffer
of the BDP to all service queues can solve the problem.Unfortu-
nately, the on-chip SRAM buffer is a scarce resource in
switches [16]. Therefore, we do not have enough buffers to
reserve a buffer size asmuch as the BDP for all service queues.

3 DYNAQ DESIGN

3.1 Design Goals

Our goal is to design a multi-queue management solution that
enables service queue isolation in switch ports over generic

transport protocols. We stipulate that a good solution should
satisfy the following requirements simultaneously:

� Protocol independence:A solution should not be tied to
a specific transport protocol.

� Work conservation:A solution should be able to utilize
the whole link capacity regardless of any time.

� Weighted fair sharing: A solution should strictly pre-
serve weighted fair sharing among service queues at
any time regardless of traffic dynamics.

� Low latency: A solution should support arbitrary
packet schedulers, especially SPQ, to minimize the
FCT of small flows.

� Practicality: A solution should be inexpensive to
implement on hardware.

3.2 Mechanisms

3.2.1 Basic Idea

DynaQ is the first protocol-independent multi-queue man-
agement scheme that satisfies the above requirements
simultaneously. We observe that the best-effort scheme and
PQL provide the following design guideline that 1) to utilize
the bottleneck link capacity fully, a service queue must be
able to occupy the buffer larger than or equal to the BDP if
there is free space in the port buffer.; 2) to share bandwidth
fairly while respecting different weights of service queues, a
service queue must be able to occupy buffer space larger
than or equal to the weighted BDP regardless of other ser-
vice queues.; 3) to guarantee the weighted fair share rate
and sustain high link utilization at the same time, the switch
should manage the port buffer dynamically among service
queues. Without dynamic multi-queue management, we
can meet only one of the two requirements at a time.

Following the above design guideline, DynaQ allows a
single service queue to occupy free buffer space in the port
but prevents the service queue from taking the buffer of
unsatisfied active queues.1 Table 1 summarizes mathemati-
cal notations used to describe our work. To realize the idea,
DynaQ assigns packet dropping threshold Ti for each

TABLE 1
Used Notations

Notation Description

M Number of queues

P Arriving packet

p Queue index of packet P

B Port buffer size

wi Weight of queue i

Ti Packet dropping threshold of queue i

qi Queue length of queue i

WBDPi Weighted BDP of queue i

Si Satisfaction threshold of queue i

T ex
i Extra buffer size of queue i

1. We express that queue i is unsatisfied if the packet dropping
threshold Ti of queue i is less than satisfaction threshold Si defined in
Eq. (4). Otherwise, queue i is satisfied.
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service queue i, which means the total size of packets that
can be buffered. The switch dynamically adjusts Ti every
packet arrival. Since a service queue should be able to
occupy the buffer up to the port buffer size, the switch does
not simply drop the arriving packet P when the dropping
threshold is exceeded. Instead, if the buffer occupancy of
the service queue of packet P exceeds T with packet P , the
switch increases the dropping threshold of the queue and
decreases that of the victim queue, which is defined as the
queue has the largest extra buffer size. However, to guaran-
tee the weighted fair share rate, the switch drops packet P
without threshold adjustment when the victim queue is an
unsatisfied active queue.

Algorithm 1. Pseudocode of DynaQ

1: if qp þ sizeðP Þ > Tp then ⊳ Exceeds threshold?
2: v argmaxi<M;i6¼PT ex

i ⊳ Find victim queue
3: if ðTv < sizeðP ÞÞ || ðqv > 0& Tv � sizeðP Þ < SvÞ then
4: Return Drop(P ) ⊳ Protect unsatisfied queues
5: else ⊳ It is okay to adjust dropping thresholds
6: Tv  Tv � sizeðP Þ ⊳ Decrease T of victim v
7: Tp  Tp þ sizeðP Þ ⊳ Increase T of queue p
8: end if
9: end if

3.2.2 Detailed Design

DynaQ operates before enqueueing decisions. As shown in
Algorithm 1, the switch first compares dropping threshold
Tp with the sum of queue length of queue p and the size of
packet P . If enqueueing packet P does not make the queue
length exceed Tp, nothing will be done. Otherwise, the
switch begins to adjust packet dropping thresholds or to
drop the packet.

Packet Dropping Threshold. DynaQ isolates service queues
using dynamic packet dropping thresholds. Each queue i
has its own dropping threshold Ti. The aggregate dropping
threshold of all service queues is equal to the port buffer
size. If the aggregate threshold exceeds the port buffer size,
the buffer will be shared like the best-effort scheme. In con-
trast, if the aggregate threshold is less than the port buffer
size, the buffer sharing policy becomes close to PQL. There-
fore, when the switch is on, DynaQ initializes the packet
dropping threshold of queue i that

T init
i ¼ B� wiP

w
: (2)

In addition, to ensure
PM

i¼1 T ¼ B, DynaQ always decreases
the dropping threshold of victim queue before increasing
the dropping threshold of the queue of packet P .

Victim Queue Selection. Before adjusting dropping thresh-
olds, the switch should find the victim queue v. One intui-
tion is that the victim should be the queue who is expected
to experience the minimal impact after decreasing its drop-
ping threshold. Therefore, a natural way to select the victim
is to find the queue with the largest threshold. However,
this may not work when service queues are with different
queue weights. For example, consider 3 service queues with
weights of 1:2:3. The switch can choose queue 3 as the

victim queue although queue 3 has only a minimum
required buffer size to enjoy the weighted fair share rate.

To respect different queue weights, DynaQ selects a ser-
vice queue with the largest extra buffer size as the victim
queue. The extra buffer size of queue i is defined as

Tex
i ¼ Ti � Si: (3)

The satisfaction threshold Si specifies the minimum
buffer size of queue i to achieve its weighted fair share rate
regardless of other queues. Theoretically,WBDPi is enough
to saturate the weighted bottleneck link capacity C wiP

w
.

However, we find that the switch does not preserve
weighted fair sharing when Si ¼WBDPi. This is because Ti

fluctuates over time, preventing queue i from enjoying its
fair share rate stably. Therefore, we need to satisfy the
inequality Si > WBDPi to make headroom to reduce the
impact of the change of Ti. Thus, we simply use that

Si ¼ B� wiP
w
: (4)

Modern line-rate switches have enough buffer size to allo-
cate a buffer size per port larger than BDP. Since B >
BDP , it is obvious that Si > WBDPi.

Victim Queue Search Without Loops. Finding the victim
queue can be done through a linear search using loops.
However, modern switching ASICs prevent loop operations
to guarantee a deterministic packet processing delay.

To deal with this constraint, DynaQ uses binary search to
find the victim queue. We make MaxIdx function that
returns the index of the larger queue after comparing the
extra buffer size between the two service queues. For exam-
ple, when the switch supports 4 service queues, we can find
the index of victim queue by referring to the return value of
MaxIdx MaxIdx 1; 2ð Þ; MaxIdx 3; 4ð Þð Þ. This requires OðlognÞ
complexity bounded to the number of service queues that
the switch supports. Modern switches typically support 4
or 8 service queues per port. Therefore, the complexity is
fixed to Oð2Þ or Oð3Þ depending on the target switch archi-
tecture. DynaQ does not consume excessive clock cycles
even with more than 8 queues. For example, when the num-
ber of queues is 32 [17], the complexity is only Oð5Þ.

Packet Dropping and Threshold Adjustment. After finding
the victim queue, the switch decides whether to drop the
packet or adjust the dropping thresholds. The switch drops
packet P if the dropping threshold of queue v is less than
the size of packet P or queue v is an unsatisfied active
queue. The former condition is to ensure Ti � 0; 8i. The lat-
ter condition is to protect an unsatisfied active queue. If we
allow a queue to take the buffer of unsatisfied active queues,
aggressive queues with many flows can occupy the port
buffer excessively. Meanwhile, the switch does not protect
inactive queues from the aggressive queues to utilize free
buffer space for high link utilization. When the above condi-
tions are not met, DynaQ changes the dropping thresholds
of queue v and queue p as much as the size of packet P . This
finishes the operation of DynaQ. After this, the switch per-
forms packet enqueueing decisions based on the port buffer
occupancy.
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3.2.3 Why It Works?

We show how DynaQ isolates service queues through a
simple theoretical analysis. Consider an output port where
M service queues share link capacity C and the buffer size
is B. Each queue i has weight wi. We suppose that queue i
has traffic with �iðtÞ, the input rate of queue i at time t. For
packet scheduling, we consider WRR as the underlying
packet scheduler where packets in queue i are scheduled
with the weight of wi every round. Since we are interested
in bandwidth sharing on the bottleneck, we consider cases
when

PM
i¼1 �iðtÞ > C. The output rate of queue i at time t

can be given by

miðtÞ ¼ min �iðtÞ;aiðtÞð Þ; (5)

where aiðtÞ represents the weighted fair share rate for queue
i at time t, which is determined by the buffer sharing policy
and the packet scheduling algorithm.

Weighted Fair Sharing. To ensure weighted fair sharing on
the bottleneck, we must guarantee aiðtÞ � wiPM

k¼1 wk

C when

�iðtÞ � wiPM

k¼1 wk

C. To achieve this, a buffer sharing solution

must satisfy the following inequality that

qmax
i ðtÞ �WBDPi; (6)

where qmax
i ðtÞ indicates the maximum queue length of

queue i at time t and WBDPi is the weighted BDP of queue
i in Eq. (1).

By adjusting packet dropping thresholds, DynaQ strictly
ensures qmax

i ðtÞ ¼ Si regardless of the input rate of other
queues where Si is the satisfaction threshold in Eq. (4). Since
Si > WBDPi, we can know that DynaQ satisfies the above
inequality. Thus, DynaQ ensures weighted fair sharing
between service queues on the bottleneck link. Note that the
best-effort scheme cannot guarantee the satisfaction of the
above inequality since it is possible qmax

i ðtÞ < WBDPi.
Work Conservation. To achieve work conservation, we

must guarantee
PM

i¼1 miðtÞ ¼ C even if there exists queue j

whose �jðtÞ < wjPM

k¼1 wk

C. To preserve this, a buffer sharing

solution must satisfy the following inequality that

XM

i¼1
qiðtÞ � C �RTT: (7)

Since DynaQ allows queue i to occupy the underutilized
buffer space, we can say that DynaQ ensures the above
inequality. Thus, DynaQ preserves work conservation. Note
that PQL does not satisfy the inequality since it is possiblePM

i¼1 qiðtÞ < C �RTT .

3.2.4 Discussion

ECN Support. DynaQ should support ECN-based transport
protocols since they are also generic transport protocols.
Since there exist ECN-based solutions, we employ PMSB [4]
rather than designing our own ECN-based mechanism. Spe-
cifically, when ECN is enabled in the switch, DynaQ does
not adjust dropping thresholds but marks the packet when
the port buffer occupancy exceeds the port ECN marking

threshold K ¼ C �RTT � � and the queue length of arriv-
ing packet queue exceeds the per-queue ECN marking
thresholdKi ¼ wiP

w
C �RTT � � simultaneously.

Port Buffer Size. We have assumed that the port buffer
size is constant so that the sum of dropping thresholds

P
T

can be equal to the port buffer size B. However, the operator
can change the port buffer size, breaking the equality
between

P
T and B. This can be resolved by performing

the initialization of the dropping thresholds via Equation (3)
after adjusting the port buffer size.

4 IMPLEMENTATION

4.1 Hardware Implementation

DynaQ can be implemented on hardware inexpensively.
Since we cannot program most switching chips, we first
analyze the overhead in ASIC implementation. Next, we
discuss the implementation on programmable switches.

Processing Overhead in ASIC Implementation. The process-
ing overhead of DynaQ in ASIC implementation is rela-
tively small since the switching ASIC consumes hundreds
of clock cycles to process a packet. Consider typical hard-
ware running at a clock frequency of 1 Ghz where 1 clock
cycle is 1 ns. We also presume that the switch supports 8
service queues per port. Note that commodity switch ASICs
support 4-8 service queues. With Algorithm 1, we can know
that DynaQ requires up to 7 clock cycles. Broadcom Trident
3 offers a minimum per-packet processing delay of 800 ns.
In this case, the overhead of DynaQ is 0.88%.

Let us show the detailed analysis. In the worst case, Lines
1-3 and Lines 6-7 in Algorithm 1 are performed. Line 1 con-
sumes 1 clock cycle. Line 2 requires log 8 ¼ 3 clock cycles.
Line 3 consumes 2 clock cycles because ðqv > 0 & Tv �
sizeðP Þ < SvÞ must be performed before jj operation with
Tv < sizeðP Þ. Note that comparison operations like qv > 0
can be pipelined. Lines 6-7 require 1 clock cycle with pipe-
lining because they have no read/write dependency.

Implementation on Programmable Switches. We analyze how
DynaQ can be implemented on a programmable switch built
with Barefoot Tofino [10]. With Tofino ASIC, we can program
processing pipelines [18]. We target Tofino Native Architec-
ture (TNA). TNA consists of 9 blocks whose 6 blocks are pro-
grammable and the other blocks only provide a fixed set of
operations. DynaQ should be implemented in the Packet
buffer andReplication Engine (PRE)where packet enqueueing
and dequeueing decisions occur. However, the PRE is still a
fixed-function block in TNA. Therefore, it is hard to implement
packet bufferingmechanisms directly due to the currently lim-
ited programmability. Instead, we should implement DynaQ
in either ingress or egress pipeline indirectly. Since DynaQ
operates before packet buffering, the ingress pipeline is the
right place to implementDynaQ.

Most variables like packet dropping thresholds, queue
weights, and satisfaction thresholds can be defined as user-
defined metadata. In addition, we can manipulate them at
runtime. MaxIdx function to find the victim queue also can be
defined as a custom function. The function returns the index
of queue with larger extra buffer size using comparators,
which are supported in the current programmable switch
architecture. The extra buffer size of each queue can be stored
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in stateful registers as well. One challenge to implement
DynaQ in TNA is to obtain the queue length information.
Since the PRE is not programmable, it is hard to obtain the
queue length of the arriving packet queue in the ingress pipe-
line. Note that this is not an issue in ASIC implementation. In
TNA, the queue length metadata is included in egress intrin-
sic metadata, but it is prohibited to share metadata between
the pipelines. Although TNA supportsmetadata bridging, we
can only deliver ingress pipeline metadata to the egress pipe-
line. We note that new Tofino2 switch ASICs allow reading
the queue length in the ingress pipeline directly,which greatly
simplifies the implementation of DynaQ [19].

To deal with the issue, we may utilize multiple registers
as follows. First, we define register arrays to count every
packet arrival for each output port. Counting packets
should be done after the port lookup stage since we need
the index of the output port. Second, we define registers to
store the current port buffer size in the ingress pipeline.
This can be done via the switch control plane when the port
buffer size changes because the control plane has switch
configuration data and data plane statistics. Third, we add a
stage in the egress pipeline that reports deq_qdepth meta-
data, the queue length at dequeue time, to the control plane.
Upon the arrival of deq_qdepth, the control plane updates
the counter registers in the ingress pipeline to reflect the cor-
rect queue length information. This may result in DynaQ
operations based on inaccurate queue length information
due to the time to update extern registers. However, with
round-robin based schedulers, we believe that some inaccu-
racy is tolerable to isolate service queues. Note that it is also
hard to implement ECN-based schemes in the ingress pipe-
line with the currently limited programmability since ECN
also requires queue length information to mark packets.
Owing to the simplicity of the mechanism, DynaQ only
requires roughly 5 match-action stages and 5.68% of addi-
tional memory to be implemented with Tofino ASICs.

4.2 Software Implementation

To compare DynaQ with various existing works in a flexible
environment, we implement a software prototype of DynaQ
as a Linux qdisc module on a server-emulated switch. Our
module is based on the software prototype of MQ-ECN [2].
Our module consists of two stages as follows.

Enqueueing Stage. When the packet from TCP/IP stack
arrives at the qdisc layer, the module returns the index of
the corresponding service queue by referring to the DSCP
field in the IP header. Next, the switch checks whether the
buffer is available to enqueue the arriving packet. Basically,
the switch performs packet enqueueing decisions based on
the port buffer occupancy or per-queue buffer occupancy
relying on the switch configuration. When the switch uses
DynaQ, the switch performs additional operations to adjust
packet dropping thresholds before enqueueing. If the
packet can be buffered, the switch enqueues the packet into
the corresponding queue. When ECN is enabled, the switch
performs ECNmarking at the end of enqueueing stage.

Dequeueing Stage. The switch dequeues packets through
work-conserving packet schedulers, which include SPQ,
DRR, and WRR. The packet schedulers follow the data
structure and mechanism of the current Linux qdisc

implementation. The dequeued packets go to NIC drivers
and NIC hardware before it is transmitted to the wire. Our
module uses a token-bucket rate limiter to shape outgoing
traffic at 99.5% of the NIC capacity. This is to avoid exces-
sive buffering in NIC drivers and NIC hardware, which can
lead to inaccurate buffer occupancy in the qdisc.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of DynaQ. We
answer the following key questions:

� How does DynaQ perform in practice?
� Does DynaQ perform well in large-scale networks?
� How robust is DynaQ to network settings?
Traffic Workloads.We use four realistic workloads derived

from production data centers, which are a web search work-
load [15], a data mining workload [20], a cache work-
load [21], and a hadoop workload [21]. As shown in Fig. 2,
these workloads generate flows whose size distributions are
heavy-tailed. For example, in the data mining workload,
roughly 50% of flows are 1KB while 90% of bytes are from
flows larger than 100 MB. Like MQ-ECN [2] and TCN [3],
we also use the web search workload for all service queues
in testbed experiments while using all the four workloads
in simulations. This is because the web search workload is
the most challenging workload due to its less skewed flow
size distribution that generates multiple concurrent flows
on the bottleneck. In addition, it is hard to make all work-
loads active during experiments because every workload
results in different finish times.

Compared Schemes. We mainly compare DynaQ with the
following schemes: BestEffort and PQL. BestEffort denotes
the best-effort scheme that manages the buffer among ser-
vice queues in a FIFO manner. PQL isolates service queues
by reserving a static per-queue buffer size. When we con-
sider low latency, we also compare DynaQ against the
ECN-based solutions, TCN [3], and PMSB [4].

Performance Metric. Our primary performance metrics are
throughput and FCTs.We also use the throughput share ratio
and Jain’s fairness index for a better understanding of
throughput results. For the average FCT, we breakdown the
FCT across different flow sizes to analyze the impact on small
(�100 KB) and large flows (>10 MB). We also consider the
99th percentile FCT of small flows to evaluate tail latency.
Due to space limitation, we omit the result of medium flows
whose results are similar to overall flows. For a clear compari-
son, the FCT results are normalized by the values of DynaQ.

5.1 Testbed Experiments

Testbed Setup. We have built a small-scale testbed, which
consists of 5 servers connected to a server-emulated switch.

Fig. 2. Used workloads in dynamic flow experiments.

KIM AND LEE: DYNAQ: ENABLING PROTOCOL-INDEPENDENT SERVICE QUEUE ISOLATION IN CLOUD DATA CENTERS 709

Authorized licensed use limited to: Korea University. Downloaded on May 18,2023 at 05:27:30 UTC from IEEE Xplore.  Restrictions apply. 



The switch is equipped with two Intel I350-T4 v2 NICs
where each NIC supports 4�1GbE ports. Each server is also
equipped with an Intel gigabit NIC. All servers use Linux
kernel 3.18.11. We use TCP for the non-ECN schemes and
DCTCP [15] for the ECN-based schemes. We set TCP
RTOmin to 10ms as suggested in many existing works [2],
[3], [15], [22], [23]. The initial congestion window size is set
to 10 packets as suggested in RFC6928. In end-hosts and the
switch, we disable large send offload (LSO) and large
receive offload (LRO) to reduce traffic burstiness and emu-
late switch hardware behaviors more correctly. To emulate
a switch with Broadcom 56538 ASIC, the switch has an
85KB of the port buffer [24], which is completely shared by
all service queues. PQL is the only exceptional scheme since
it limits the per-queue buffer size. The base RTT is roughly
500 ms and the corresponding BDP is 62.5 KB. We set ECN
marking thresholds for DCTCP and TCN to 30 KB and
240ms, respectively. These are the best values experimen-
tally found. Note that there is a theory-practice gap in deter-
mining ECNmarking thresholds [3].

5.1.1 Static Flow Experiments

In static flow experiments, we focus on weighted fair shar-
ing and work conservation.

Convergence and Queue Evolution. In this experiment, we
show the basic results with two active queues between 4
DRR queues having an equal quantum of 1.5 KB. We use
three servers where two servers are the senders for each ser-
vice queue and the other one is the receiver. Using iperf,
each sender starts flows to the receiver for 10 seconds. The
sender of queue 2 generates 16 flows while the sender of
queue 1 has only 2 flows. Ideally, the active queues should
share bandwidth equally regardless of the number of com-
peting flows and the inactive queues.

Fig. 3 shows the throughput of the active queues over
time. It is easy to find that DynaQ is the only solution that
shares bandwidth fairly. Throughput of the active queues
in BestEffort does not converge, resulting in significant

unfairness. With PQL, the active queues share the band-
width fairer than BestEffort but still results in considerable
unfairness.

Fig. 4 reports the queue length evolution for the active
queues. We measure per-queue buffer occupancy every
enqueueing and dequeueing operations and obtain 1K
sequential samples. The dotted lines indicate per-queue
buffer size. The queue evolution samples explain the
throughput in Fig. 3. In BestEffort, since queue 2 has more
flows, queue 2 dominates the port buffer while queue 1
with smaller flows occupies a small buffer. In PQL, queue 2
can occupy buffer space more than that in BestEffort, but it
is limited to a reserved size. Unlike the other schemes,
DynaQ shares the buffer dynamically that dropping thresh-
olds change over time. Thanks to this, each queue can
occupy enough buffer regardless of the number of flows
and active queues.

Weighted Fair Sharing and Work Conservation. In this exper-
iment, we consider 4 DRR queues with equal quantum as
same as the previous experiment. However, we now vary
the number of active queues over time. Each queue has a
different number of flows that the sender of queue i starts 2i

flows to the receiver simultaneously. From 10 seconds, we
change the number of active queues by stopping flows. At
10 seconds, the sender of queue 4 stops traffic. After 5 sec-
onds, queue 3 becomes inactive. At 20 seconds, the sender
of queue 2 no longer sends flows. The sender of queue 1 fin-
ishes at 25 seconds. We measure per-queue throughput
every 0.5 seconds and obtain the aggregate throughput as
well. Ideally, service queues should share bandwidth fairly
regardless of the number of flows and the aggregate
throughput always should be high regardless of the number
of active queues.

Fig. 5 shows the results. We observe that BestEffort fails
to achieve fair sharing. When all the four queues are active,
queue 4 with 16 flows occupies the largest bandwidth share
because the port buffer is dominated by the packets of
queue 4. Due to this, queue 1 only obtains 0.14Gbps of aver-
age throughput for the first 10 seconds. Even when only

Fig. 3. [Experiment] Throughput convergence of two active DRR queues with equal weight.

Fig. 4. [Experiment] Queue length evolution of two active DRR queues with equal weight.
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queues 1 and 2 are active at 15 seconds, the two queues do
not share bandwidth fairly in spite of the scheduler because
queue 2 has twice as many flows as queue 1.

PQL shows better results than BestEffort. When all
queues are active, PQL preserves fair sharing. However,
when the number of active queues decreases, fair sharing is
violated. We can see the unfair bandwidth sharing between
the two service queues at 15 � 20 seconds. More impor-
tantly, we can see that the aggregate throughput decreases
as the queues become inactive. It is notable that the average
aggregate throughput during 20 � 25 seconds is only 0.78
Gbps. This is because each service queue cannot utilize the
remaining free buffer space. Unlike the compared schemes,
DynaQ makes the service queues share bandwidth almost
perfectly regardless of the number of flows. In addition,
since DynaQ allows a queue to utilize free buffer space, the
aggregate throughput does not decrease even when few
queues are active.

Impact of Queue Weights. In this experiment, we use the
same scenario in the previous experiment. The difference is
that we configure different quantums for the DRR queues.
Our default quantum is 1.5 KB of MTU. We set the weights
of the queues to f4; 3; 2; 1g, which result in f6; 4:5; 3; 1:5gKB
of quantums. We measure the per-queue throughput every
0.5 seconds for 10 seconds. Ideally, the queues should share
the bandwidth by respecting their assigned weights.

Fig. 6 shows the throughput share of each service queue.
The throughput share is defined as RiðtÞ=

P
RðtÞ where

RiðtÞ denotes the throughput of queue i at time t. The result
with BestEffort shows that BestEffort does not preserve
weighted fair sharing. In spite of different quantums, Bes-
tEffort allows a queue with many flows to occupy more
throughput share. For example, the average throughput
share of queue 4 for 10 seconds is 0.35 although its desirable
share is 0.1. PQL achieves weighted fair sharing in this
experiment. This is not surprising because PQL assigns a
static buffer size to each service queue. However, as we
have shown in the previous experiment, PQL loses through-
put as the number of active queues decreases although it is

omitted in this experiment. The result demonstrates that
DynaQ achieves weighted fair sharing by respecting the
assigned weights regardless of the number of competing
flows.

Impact of Transport Protocols. We consider a scenario
where senders use different transport protocols. We have
tried to use emerging protocols, but it is hard to obtain their
codes. Instead, we use TCP and CUBIC. Unlike the previous
experiments where all senders use TCP, we now make the
senders of queues 3 and 4 use CUBIC. Except for transport
protocols, we use the same scenario in the equal sharing
experiment. Fig. 7 shows the results. We can see that DynaQ
achieves fair sharing regardless of employed transport pro-
tocols. One notable point is that, at 10 seconds and 15 sec-
onds, we can see that the aggregate throughput decreases
slightly for a moment when queue 4 and queue 3 become
inactive. This is because of the time for the ramp-up of the
other queues, not due to our buffer sharing policy. Delay-
based protocols and INT-based protocols also can work
well with DynaQ since the adjustment of dropping thresh-
old only changes the buffer occupancy that each packet
sees, not the sending rate of senders directly. The protocols
simply adjust the sending rate with updated congestion sig-
nals, which are affected by the buffer occupancy.

5.1.2 Dynamic Flow Experiments

Methodology. At the switch, we configure SPQ/DRR where
one queue has a higher priority than the other four DRR

Fig. 5. [Experiment] Bandwidth sharing between 4 DRR queues with equal weight.

Fig. 6. [Experiment] Bandwidth sharing between 4 DRR queues with different queue weights of 4:3:2:1.

Fig. 7. [Experiment] Throughput with 2 TCP and 2 CUBIC senders.
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queues. Packets in the DRR queues can be dequeued only
when the SPQ queue is empty. This is a common switch
configuration to accelerate latency-sensitive small flows [3].
We use 1.5 KB of an equal quantum for all DRR queues.
Note that SPQ does not require threshold configurations of
DynaQ because it is to dequeue packets of queues with pri-
orities, not to ensure fairness among the queues.

Weuse a client/server application [2] to generate trafficwith
the web search workload. We have 4 servers and 1 client. The
client initially opens 5 persistent TCP connections to each
server. The client generates requests to the servers through
available connections. When there is no available connection,
the client creates a new connection. The inter-arrival time of
generated requests follows a Poisson process. When a request
arrives, each of the servers responds with the requested data
size. The server application sets DSCP values for outgoing
packets using setsockopt and a flow ismapped to one of the
service queues randomly. We also employ a two-level
PIAS [25] to classify small flowswith 100KB of a priority demo-
tion threshold. Therefore, the first 100K bytes are buffered into
the SPQ queue and the remaining bytes are enqueued into the
DRRqueues in the lowpriority. Overall, we generate 10Kflows
by varying the traffic load from 30% to 80%.

Comparison With Non-ECN Schemes. Fig. 8 reports the
results that compare DynaQ with non-ECN schemes. The
average FCTs of overall and large flows are similar since
most of the bytes in the benchmark traffic come from large
flows. Compared to PQL, DynaQ achieves the better aver-
age FCT for large flows by up to 1:95� . Similarly, DynaQ
outperforms PQL in the average FCT for overall flows by
up to 1:80� . This is because a service queue in PQL can
occupy a limited buffer space. The results against BestEffort
are mixed whose gaps are within 0:90� � 1:02� and
0:83� � 0:97� for the average FCT of overall flows and
large flows, respectively. The reason why BestEffort outper-
forms DynaQ is that large flows block small flows. Not sur-
prisingly, we can see that DynaQ outperforms BestEffort in
the FCT of small flows. Although BestEffort outperforms
DynaQ in the FCT of large flows, BestEffort cannot preserve
weighted fair sharing as we have shown.

For the average FCT of small flows, DynaQ achieves the
best performance between the schemes. DynaQ beats Bes-
tEffort by 1:26� on average across the traffic loads. The per-
formance gap increases as the traffic load increases.
Compared to PQL, DynaQ has the better performance
within 1:08� � 1:14� . From the 99th percentile FCT result,
we find that BestEffort shows a significantly worse perfor-
mance than DynaQ when traffic load increases. For exam-
ple, the FCT gap in 60% of load is 8:40� . Unlike BestEffort,
PQL shows relatively stable performance. However, DynaQ
still outperforms PQL by 1:14� on average across the loads.

Comparison With ECN-Based Schemes. We now discuss the
FCT results of DynaQ compared to the ECN-based schemes.
Fig. 9 shows the results. Like the results in Fig. 8, the results
for overall and large flows are similar. DynaQ shows the
mixed performance against the ECN-based solutions but
generally outperforms the comparisons. TCN shows similar
average FCTs for overall and large flows when traffic loads
are within 30% � 40%. However, the maximum gap is only
0:95� for overall flows when the load is 30%. DynaQ out-
performs TCN for the rest traffic loads whose ranges of per-
formance gaps are within 1:28� � 1:85� and 1:29� � 1:99�
for overall and large flows, respectively. PMSB also has a
similar performance to TCN. Per-Queue ECN shows the
worst performance between the schemes. When we con-
sider the results for small flows, DynaQ beats the other
ECN-based schemes in both average and 99th percentile
FCTs. For example, DynaQ is better than PMSB by up to
1:29� in the average FCT. The ECN-based schemes show
the worse performance at lower traffic loads than high traf-
fic loads. DynaQ outperforms PMSB and Per-Queue ECN
by 12:23� and 12:63� at 30% of traffic load, respectively.

Impact of Packet Schedulers. For deep dive, we also conduct
an experiment with different scheduling configurations. The
methodology of this experiment is the same as the previous
experiments except that we have only four DRR queues
with equal quantum. This configuration deserves consider-
ation in practice because the switch may not configure a
SPQ queue for some reason. Specifically, we can consider
some scenarios when many traffic classes can be required or
the switch supports only a few service queues.

We plot the results at a moderate load of 60% in Fig. 10.
We observe that DynaQ outperforms BestEffort and PQL in
the average FCTs for overall, small, and large flows as well
as the 99th percentile FCT for small flows. Compared to the
results in Fig. 8 where SPQ exists, we can find the following
differences. First, for the FCT of small flows, the gap
between DynaQ and BestEffort is decreased because small
flows are not prioritized anymore. Second, DynaQ now
beats BestEffort in the average FCT for large flows. This is
because, in this configuration, DynaQ does not penalize
large flows to expedite small flows. We do not observe any
negative results, and this suggests that DynaQ is robust to
different packet scheduling configurations.

5.2 Large-Scale Simulations

We conduct ns-2 simulations with large-scale environments.

5.2.1 Static Flow Simulations

Methodology. Like our testbed, we build a star topology to
emulate a compute rack. We consider two high-speed links:

Fig. 8. [Experiment] FCTcomparison against non-ECN schemes with SPQ (1 queue)/DRR (4 queues).
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10 Gbps and 100 Gbps. The base RTTs are 84ms and 40ms for
each of the links. In the switch, we configureWRRwith equal
weight for packet scheduling. We have enabled the Jumbo
frame for 100Gbps links. We consider Broadcom Trident+
and Trident 3 ASICs for 10 Gbps and 100 Gbps links, respec-
tively. Therefore, each port has 192 KB and 1 MB of buffers,
which are completely shared by service queues, except in
PQL. We use TCP for the transport protocol and set RTOmin

to 5ms, the lowest stable value in jiffy timer [23].
Impact of Link Capacity. We first perform a simulation

with 10 Gbps links. We have 8 services, which are mapped
to each of 8 service queues. There exist 2� i senders for
queue i. Every sender of service queues starts a flow at the
beginning simultaneously. From 200 ms, the senders of
queues 2 � 8 stop their transmissions every 50 ms in order.
For example, the senders of queue 3 finish flows at 250 ms,
and queue 1 is the only active queue after 500 ms. We mea-
sure per-queue throughput every 10 ms. Using the mea-
sured data, we calculate Jain’s fairness index between active
queues and the aggregate throughput. The aggregate
throughput is to inspect whether the link is fully utilized at
any time. If a solution preserves weighted fair sharing and
work conservation, the two metrics always should be high.

Fig. 11 shows the bandwidth sharing results with 10
Gbps links. Not surprisingly, DynaQ and PQL achieve the
near-optimal fairness index while BestEffort causes fluctua-
tions. For example, the fairness index plunges to 0.67 at 410
ms. This is because BestEffort cannot handle service queues
with many flows. Fig. 11b shows that DynaQ is the only
solution that maintains high link utilization between the
schemes. When queue 8 finishes at 500 ms, PQL causes a
huge throughput collapse. PQL maintains the aggregate

throughput around 8.5 Gbps after 500 ms. This is because
queue 1, the only active service queue, cannot occupy the
buffer as much as the BDP.

We perform the same simulation with 100 Gbps and
Fig. 12 reports the results. We find that DynaQ can achieve
work conservation and preserve weighted fair sharing with
a high link capacity. The overall tendency is very similar to
the 10 Gbps results. BestEffort cannot provide per-queue
fairness and PQL loses a significant amount of throughput
when service queue 1 is the only active queue. In addition,
DynaQ does not lose throughput much at 500 ms. Unlike
DynaQ, BestEffort causes 9.2 Gbps of throughput loss.

Impact of Traffic Dynamics. We now inspect how DynaQ is
robust to traffic dynamics. We conduct a simulation with the
almost same scenario as the previous simulation with 100
Gbps. The only different setting is the number of senders per
service queue. We consider a very extreme scenario where
service queue i has 2ð3þiÞ senders generating a single flow.
For example, queue 8 has 2048 flows. Fig. 13 plots the results.
We observe that DynaQ is robust to the extreme traffic sce-
nario. BestEffort shows theworst performance in the fairness
index that it achieves only 0.24 of fairness index for the first
200 ms. The scheme also loses throughput at 300 ms for a
moment. PQL still fails to achieve work conservation. The
aggregate throughput stays below 94.5 Gbps from 500ms.

5.2.2 Dynamic Flow Simulations

Methodology. We build a non-blocking leaf-spine topology, a
widely used data center network topology design. Our
topology has 12 leaf (ToR) switches and 12 spine (Core)

Fig. 9. [Experiment] FCTcomparison against ECN-based schemes with SPQ (1 queue)/DRR (4 queues).

Fig. 10. [Experiment] FCTcomparison with DRR (4 queues).

Fig. 11. [Simulation] Bandwidth sharing on 10Gbps links.

Fig. 12. [Simulation] Bandwidth sharing on 100Gbps links.

Fig. 13. [Simulation] Bandwidth sharing with many flows.
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switches. Each leaf switch has 12�10 Gbps downlinks and
12�10 Gbps uplinks. The base RTT across spine switches is
85.2ms. We use ECMP as the load balancing scheme [26].
We use TCP and RTOmin is 5ms [23]. Each switch port has a
192KB buffer [24] shared by service queues except in PQL.

We configure SPQ/DRR with 8 service queues where one
queue is the shared high priority queue and the other 7
queues are dedicated DRR queues with equal quantum.
Like the testbed experiments, we also employ a two-level
PIAS [25] whose priority demotion threshold is 100 KB to
classify small flows from large flows. We evenly classify the
144� 143 communication pairs into 7 services and each ser-
vice has its own service queue. Different services use differ-
ent traffic distributions in Fig. 2. We generate 10K flows by
varying traffic load from 30% to 80%.

Comparison With Non-ECN Schemes. Fig. 14 compares
DynaQ against non-ECN schemes. In the average FCT for
overall flows, we observe that DynaQ has mixed results com-
pared to BestEffort and outperforms PQL. This is similar to
the results in the testbed experiments. The gaps with BestEf-
fort are within 0:98� � 1:01� . For the average FCT of small
flows, we can see the mixed results. DynaQ beats BestEffort
across the loads but underperforms PQL from 60% to 80%.
However, the gaps are only within 0:98� � 1:02� . For the
99th percentile FCT of small flows, we can see that DynaQ
achieves similar performance to the compared schemes. PQL
slightly outperformsDynaQ that themaximum gap is 0:98� .
In the testbed experimentswith 1Gbps links, BestEffort results
in performance degradation when loads are high. However,
with 10Gbps links, DynaQ beats BestEffort only by up to
1:01� due to the increased link capacity. For the average FCT
of large flows, DynaQ is better than BestEffort but is worse
than PQL. The maximum gap is 0:82� at 40% of traffic load.
We suspect that this is because PQL does not share buffer
space between the queues in the leaf and spine switches.

Comparison With ECN-Based Schemes. Fig. 15 shows the
FCT results with ECN-based schemes. It is easy to find that
DynaQ outperforms Per-Queue ECN and PMSB across all
the flow sizes, and this is similar to the results in the testbed
experiments. One difference from the testbed experiments
is that TCN outperforms DynaQ. For the average FCT of

overall flows, DynaQ underperforms TCN by up to 0:73� .
The results for the average FCT of small and large flows are
also similar. Specifically, DynaQ is worse than TCN by up
to 0:77� and 0:75� in the average FCT of small flows and
large flows, respectively. For the 99th percentile FCT of
small flows, the gap between DynaQ and TCN decreases as
traffic load increases. We omit the result at 30% of 0:10�
because it harms the visibility of the figure. This is because
TCN can provide low tail latency, especially in a low traffic
load. Despite its superior performance in the FCT, TCN
does not support generic transport protocols.

6 RELATED WORK

We briefly review existing works addressing buffer sharing
in switches. LossPass [13], EDT [27], CEDM [28], and
DTS [29] propose buffer sharing mechanisms to absorb
microburst traffic. DTS reserves a dedicated buffer for each
service queue and utilizes shared buffers to absorb micro-
busrts. In terms of service queue isolation, DTS is similar to
PQL because it statically reserves a buffer size, leading to
violating work conservation when few queues active.
Aelous [30] and BCC [24] concern buffer sharing with ECN.
These solutions are unaware of service queue isolation.

There exist per-port buffer sharing solutions like the
dynamic threshold algorithm [31]. In addition, commodity
switches allow a port to occupy many buffers [32]. How-
ever, even we allocate a large buffer to a port, bandwidth
cannot be shared fairly since aggressive queues eventually
fill up the buffer. It also harms per-port fairness by taking
excessive buffers that can be assigned to the other ports.
Meanwhile, there exist deep buffered switches with an
external large DRAM buffer. Unfortunately, the switches
have low switching throughput and insufficient processing
delay to satisfy the requirements of user-facing applications.

7 CONCLUSION

This paper proposed DynaQ, a protocol-independent multi-
queue management solution that can isolate service queues
with generic transport protocols through dynamic packet

Fig. 14. [Simulation] FCTcomparison against non-ECN schemes with SPQ (1 queue)/DRR (7 queues).

Fig. 15. [Simulation] FCTcomparison against ECN-based schemes with SPQ (1 queue)/DRR (7 queues).
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dropping thresholds. We have discussed how DynaQ can
be implemented on hardware. To compare DynaQ with
existing solutions, we have implemented a software proto-
type of DynaQ as a Linux qdisc module. Our extensive
experiment and simulation results demonstrated that
DynaQ ensures work conservation, weighted fair sharing,
and low latency without protocol dependency.

ACKNOWLEDGMENTS

This work was supported in part by the National Research
Foundation of Korea (NRF) Grant funded by the Ministry of
Science and ICT under Grant 2019R1A2C2088812. A prelim-
inary version of this article appeared in the Proceedings of
the 40th IEEE International Conference on Distributed Com-
puting Systems (IEEE ICDCS 2020) [1].

REFERENCES

[1] G. Kim and W. Lee, “Protocol-independent service queue isola-
tion for multi-queue data centers,” in Proc. IEEE 40th Int. Conf.
Distrib. Comput. Syst., 2020, pp. 355–365.

[2] W. Bai, L. Chen, K. Chen, and H. Wu, “Enabling ECN in multi-ser-
vice multi-queue data centers,” in Proc. 13th USENIX Conf. Netw.
Syst. Des. Implementation, 2016, pp. 537–549.

[3] W. Bai, K. Chen, L. Chen, C. Kim, and H. Wu, “Enabling ECN
over generic packet scheduling,” in Proc. 12th Int. Conf. Emerg.
Netw. Experiments Technol., 2016, pp. 191–204.

[4] Y. Pan et al., “Support ECN in multi-queue datacenter networks
via per-port marking with selective blindness,” in Proc. IEEE 38th
Int. Conf. Distrib. Comput. Syst., 2018, pp. 33–42.

[5] Y. Li et al., “HPCC: High precision congestion control,” in Proc.
ACM Special Interest Group Data Commun., 2019, pp. 44–58.

[6] I. Cho, K. Jang, and D. Han, “Credit-scheduled delay-bounded
congestion control for datacenters,” in Proc. ACM Special Interest
Group Data Commun., 2017, pp. 239–252.

[7] R. Mittal et al., “TIMELY: RTT-based congestion control for the
datacenter,” in Proc. ACM Conf. Special Interest Group Data Com-
mun., 2015, pp. 537–550.

[8] C. Lee, C. Park, K. Jang, S. Moon, and D. Han, “Accurate latency-
based congestion feedback for datacenters,” in Proc. USENIX
Conf. USENIX Annu. Techn. Conf., 2015, pp. 403–415.

[9] MellanoxMLNX-OSusermanual for ethernet, Sunnyvale, CA,USA,
Mellanox Technologies, White Paper, 2017. [Online]. Available:
https://www.mellanox.com/related-docs/prod_management_
software/MLNX-OS_ETH_v3_6_3508_UM.pdf

[10] Tofino Programmable Switch. Accessed: Sep. 11, 2021. [Online].
Available: https://www.barefootnetworks.com/

[11] The Network Simulator ns-2. Accessed: Sep. 11, 2021. [Online].
Available: http://www.isi.edu/nsnam/ns/

[12] M. Alizadeh et al., “pFabric: Minimal near-optimal datacenter trans-
port,” inACMSIGCOMMConf. SIGCOMM, 2013, pp. 435–446.

[13] G. Kim and W. Lee, “Absorbing microbursts without headroom
for data center networks,” IEEE Commun. Lett., vol. 23, no. 5, pp.
806–809, May 2019.

[14] H. Wu, J. Ju, G. Lu, C. Guo, Y. Xiong, and Y. Zhang, “Tuning ECN
for data center networks,” in Proc. 8th Int. Conf. Emerg. Netw.
Experiments Technol., 2012, pp. 25–36.

[15] M. Alizadeh et al., “Data center TCP (DCTCP),” ACM SIGCOMM
Comput. Commun. Rev., vol. 40, no. 4, pp. 63–74, 2010.

[16] L. Zheng, Z. Qiu, S. Sun, W. Pan, Y. Gao, and Z. Zhang, “Design
and analysis of a parallel hybrid memory architecture for per-
flow buffering in high-speed switches and routers,” J. Commun.
Netw., vol. 20, no. 6, pp. 578–592, Dec 2018.

[17] P. Goyal, P. Shah, N. K. Sharma, M. Alizadeh, and T. E. Anderson,
“Backpressure flow control,” 2019, arXiv:1909.09923.

[18] H. Zhu et al., “Racksched: A microsecond-scale scheduler for rack-
scale computers,” in Proc. 14th USENIX Symp. Operating Syst. Des.
Implementation, 2020, pp. 1225–1240.

[19] Advanced Congestion & Flow Control With Programmable
Switches, Apr. 2020. [Online]. Available: https://opennetworking.
org/wp-content/uploads/2020/04/JK-Lee-Slide-Deck.pdf

[20] A. Greenberg et al., “Vl2: A scalable and flexible data center network,”
ACMSIGCOMMComput. Commun. Rev., vol. 39, no. 4, pp. 51–62, 2009.

[21] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside
the social network’s (datacenter) network,” in Proc. ACM Conf.
Special Interest Group Data Commun., 2015, pp. 123–137.

[22] G. Judd, “Attaining the promise and avoiding the pitfalls of TCP
in the datacenter,” in Proc. 12th USENIX Conf. Netw. Syst. Des.
Implementation, 2015, pp. 145–157.

[23] V. Vasudevan et al., “Safe and effective fine-grained TCP retrans-
missions for datacenter communication,” ACM SIGCOMM Com-
put. Commun. Rev., vol. 39, no. 4, pp. 303–314, 2009.

[24] W. Bai, S. Hu, K. Chen, K. Tan, and Y. Xiong, “One more config is
enough: Saving (DC)TCP for high-speed extremely shallow-buff-
ered datacenters,” in Proc. IEEE INFOCOM IEEE Conf. Comput.
Commun., 2020, pp. 2007–2016.

[25] W. Bai, K. Chen,H.Wang, L. Chen, D.Han, andC. Tian, “Information-
agnostic flow scheduling for commodity data centers,” in Proc. 12th
USENIXConf. Netw. Syst.Des. Implementation, 2015, pp. 455–468.

[26] M. Park, S. Sohn, K. Kwon, and T. T. Kwon, “MaxPass: Credit-
based multipath transmission for load balancing in data centers,”
J. Commun. Netw., vol. 21, no. 6, pp. 558–568, Dec. 2019.

[27] D. Shan, W. Jiang, and F. Ren, “Absorbing micro-burst traffic by
enhancing dynamic threshold policy of data center switches,” in
Proc. IEEE Conf. Comput. Commun., 2015, pp. 118–126.

[28] D. Shan and F. Ren, “Improving ECN marking scheme with
micro-burst traffic in data center networks,” in Proc. IEEE Conf.
Comput. Commun., 2017, pp. 1–9.

[29] Cisco catalyst 9000 switching platforms: QoS and queuing white
paper, San Jose, CA, USA. White Paper, 2020. [Online]. Available:
https://www.cisco.com/c/en/us/products/collateral/
switches/catalyst-9000/white-paper-c11-742388.html

[30] S. Hu et al., “Aeolus: A building block for proactive transport in data-
centers,” in Proc. Annu. Conf. ACM Special Interest Group Data Commun.
Appl. Technol. Architectures Protoc. Comput. Commun., 2020, pp. 422–434.

[31] A. K. Choudhury and E. L. Hahne, “Dynamic queue length
thresholds for shared-memory packet switches,” IEEE/ACM
Trans. Netw., vol. 6, no. 2, pp. 130–140, Apr. 1998.

[32] Arista 7050x3 series switch architecture, Santa Clara, CA, USA,
White Paper, 2018. [Online]. Available: https://www.arista.com/
assets/data/pdf/Whitepapers/7050X3_Architecture_WP.pdf

Gyuyeong Kim (Member, IEEE) received the BS
and PhD degrees in computer science from
Korea University, South Korea, in 2012 and 2020,
respectively. He is currently a research professor
with Future Network Center, Korea University. His
research interests include networked systems
and networking support for AI, big data, cloud,
and IoTsystems.

Wonjun Lee (Fellow, IEEE) received the BS and
MS degrees in computer engineering from Seoul
National University, Seoul, South Korea, in 1989
and 1991, respectively, the MS degree in com-
puter science from the University of Maryland,
College Park, MD, USA, in 1996, and the PhD
degree in computer science and engineering from
the University of Minnesota, Minneapolis, MN,
USA, in 1999. In 2002, he joined the faculty of
Korea University, Seoul, South Korea, where he is
currently a professor with the School of Cyberse-

curity. He has authored or co-authored more than 220 papers in refereed
international journals and conferences. His research interests include
communication and network protocols, optimization techniques in wire-
less communication and networking, security and privacy in mobile com-
puting, and RF-powered computing and networking. He was on the TPC
and an organizing committee member of IEEE INFOCOM from 2008 to
2021, the PC Vice Chair of IEEE ICDCS 2019, and ACM MobiHoc from
2008 to 2009, andmore than 130 international conferences.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

KIM AND LEE: DYNAQ: ENABLING PROTOCOL-INDEPENDENT SERVICE QUEUE ISOLATION IN CLOUD DATA CENTERS 715

Authorized licensed use limited to: Korea University. Downloaded on May 18,2023 at 05:27:30 UTC from IEEE Xplore.  Restrictions apply. 

https://www.mellanox.com/related-docs/prod_management_software/MLNX-OS_ETH_v3_6_3508_UM.pdf
https://www.mellanox.com/related-docs/prod_management_software/MLNX-OS_ETH_v3_6_3508_UM.pdf
https://www.barefootnetworks.com/
http://www.isi.edu/nsnam/ns/
https://opennetworking.org/wp-content/uploads/2020/04/JK-Lee-Slide-Deck.pdf
https://opennetworking.org/wp-content/uploads/2020/04/JK-Lee-Slide-Deck.pdf
https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-9000/white-paper-c11-742388.html
https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-9000/white-paper-c11-742388.html
https://www.arista.com/assets/data/pdf/Whitepapers/7050X3_Architecture_WP.pdf
https://www.arista.com/assets/data/pdf/Whitepapers/7050X3_Architecture_WP.pdf


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


