
Network-Accelerated Multiget Coordination for

Distributed Key-Value Stores
Jiyoon Bang and Gyuyeong Kim

Department of Computer Engineering

Sungshin Women’s University

Seoul, South Korea

Email: {220234008,gykim}@sungshin.ac.kr

Abstract—Modern key-value stores support multiget requests,
which allow clients to retrieve the values of multiple speci-
fied keys in a single request. However, the multiget operation
causes extra coordination overhead when requested keys are
distributed across multiple servers. Unfortunately, existing co-
ordination architectures suffer from high client overhead or
limited scalability. To this end, we propose NetMC, a network-
accelerated multiget coordination architecture that achieves high
throughput, low latency, and scalability simultaneously. Our key
idea is to distribute the labor of multiget coordination between
the network switch and the client. Specifically, we offload the
stateless request splitting to the I/O-optimized network switch,
while the stateful reply aggregation is performed on the client
side. By leveraging the strengths of each system component
for coordination functionality, NetMC reduces the coordination
overhead significantly. We implement a NetMC prototype on a
cluster of commodity servers connected via an Intel Tofino switch.
Our experimental results show that NetMC outperforms existing
architectures and is robust to various system conditions.

I. INTRODUCTION

Today’s online services like web search and social network-

ing often require hundreds of thousands of storage accesses

to handle concurrent user requests. Key-value stores like

Redis [1] and Memcached [2] have been fundamental building

blocks for online services thanks to their ability to access

key-value items quickly. Service applications often generate

transactional read requests to multiple keys. For example, the

client should fetch a number of data objects from key-value

storage to render a single web page.

Many key-value stores support the multiget operation

to reduce the overhead to handle multi-key access [1], [2],

[3], [4], [5]. The multiget operation allows the client to get

the values of multiple specified keys in a single read request.

This significantly reduces latency to read multiple keys and

packet processing overhead compared to accessing the keys

with individual get requests. Thanks to the performance

benefits, the multiget operation has been widely employed.

For example, Meta leverages the multiget to improve the

performance of Memcached clusters of Facebook [6].

While promising, the multiget operation requires extra co-

ordination when requested keys are distributed over multiple

storage servers. Specifically, we should split a single request

into multiple sub-requests for different servers since not all

requested keys may be stored in the same storage server.

In a similar vein, we should aggregate sub-replies into a

single reply. Performing the coordination at the client is

a straightforward solution [1], [2], [7], but it suffers from

excessive client overhead, harming throughput and latency. We

may use a coordinator node to reduce the client overhead [8],

[3], [5], [4]. However, the coordinator-based architecture is

not scalable since it can easily become a bottleneck as re-

quest rates grow, degrading overall performance. Building a

coordination layer with multiple nodes between clients and

storage servers is not cost-effective. In this context, we ask the

following question: Can we coordinate the multiget operation

while achieving high throughput, low latency, and scalability

simultaneously?

We answer the above question affirmatively by presenting

NetMC, a Network-accelerated Multiget Coordination archi-

tecture. NetMC divides the work of multiget coordination (i.e.,

request splitting and reply aggregation) between the network

switch and the client. Specifically, we offload the request

splitting function to the network switch while performing the

reply aggregation at the client. Our design rationale is that each

coordination function is best performed at its vantage point.

For example, the I/O-optimized network switch is well-suited

for stateless and I/O-intensive request splitting. Furthermore,

programmable switch ASICs like Intel Tofino [9] allow us

to customize the switch data plane while maintaining high

packet processing throughput. The client is a better vantage

point for reply aggregation than the switch. This is because the

operation is stateful and requires complex logic for variable-

length data, which is non-trivial to implement in the switch

data plane.

The idea of offloading request splitting to the switch im-

poses several technical challenges due to the strict hardware

constraints. We address the challenges by simplifying the

switch mechanism as much as possible through client-side as-

sistance. This allows us to avoid potential limits on application

semantics. For example, we let the client group the keys for

the same server in advance and embed hints in the packet

header so that the switch can identify key groups destined

for the same storage server without loops. Furthermore, the

client puts the server ID of key groups into the header. This

allows us to support an arbitrary number of storage servers,

although the switch only supports modulo operations for a

power of two. With the assistance, the task of the switch is

greatly simplified. It splits a request into multiple sub-requests

using built-in features of the programmable switch, which are

packet cloning and recirculation.

We implement a NetMC prototype on a testbed consisting

of 8 commodity servers and a programmable switch with Intel

Tofino [9]. We conduct extensive experiments to demonstrate

the efficiency and robustness of NetMC. We compare NetMC

against the client-based and coordinator-based multiget coor-

dination architectures. Experimental results show that NetMC

outperforms the other architectures in throughput, latency, and

scalability. NetMC is robust to various system conditions like

write ratio, key size, value size, and multiget size. We show

that NetMC can also deal with switch failures with rapid

throughput recovery. We demonstrate the practicality through

experiments with Redis [1], an in-memory key-value store

widely deployed in production environments.

In summary, we make the following contributions.

• We propose NetMC, a new multiget coordination archi-

tecture that divides the labor of multiget coordination

functions between the switch and the client for high

performance and scalability.

• We design a custom switch data plane that implements

switch-based request splitting by addressing technical

challenges through client-side assistance.

• We implement a NetMC prototype with an Intel Tofino

switch and demonstrate the efficiency and robustness of

NetMC through extensive experiments.

The remainder of this paper is organized as follows. In

Section II, we provide an overview of multiget operations and

discuss the limitations of existing architectures. We describe

the design of NetMC and the implementation of the system in

Section III and Section IV, respectively. Section V presents the

experimental results. We review related works in Section VI.

Finally, we conclude our work in Section VII.

II. BACKGROUND AND MOTIVATION

In this section, we first provide background on the multiget

operation and its coordination overhead. We also motivate the

necessity of a new multiget coordination architecture.

A. Multiget Operations in Key-Value Stores

Today’s large-scale online services often need to access

multiple specified keys to handle user requests. To access data

efficiently, many key-value stores support the multiget op-

eration, which batches read operations for multiple keys to get

the values within a single request [1], [3], [5], [2]. Compared

to using multiple get requests, the multiget operation offers

better latency by reducing the number of messages to read

many specified keys. Multiget is different from the SCAN,

which returns key-value pairs that match a given pattern or

range by searching a bulk of keys sequentially.

In Fig. 1, we illustrate an example to show the difference

between get and multiget operations in a situation where a

client reads 3 keys from a server. As shown in Fig. 1 (a),

when we use get requests, the client should send 3 individual

requests for each key. However, if the client uses the multiget

operation as in Fig. 1 (b), it is enough to send a single request

that contains all the requested keys. The server returns the

values of the requested keys in a single reply as well.

ServerClient

① Get(A)

② Get(B)

③ Get(C)

④ Reply(A, 1)

⑤ Reply(B, 2)

⑥ Reply(C, 3)

(a) Get operation

Client Server

① Multiget

(A, B, C)

② Reply

({A, 1}, {B, 2}, {C, 3})

(b) Multiget operation

Fig. 1: An example of get and multiget operations. With

the multiget operation, the client can read the values of 3

keys using a single request, reducing client-side overhead and

latency.

B. Multiget Coordination Overhead

Multiget coordination. While the multiget is an efficient

technique, it requires extra coordination when requested keys

are distributed across multiple servers. The multiget coor-

dination consists of request splitting and reply aggregation.

Specifically, we should split the request into multiple sub-

requests for different servers unless all requested keys are

stored in the same storage server. Since each server returns

the values of the requested keys in the same sub-request, we

also have multiple sub-replies. Therefore, we should merge the

sub-replies into a single reply. There are two typical multiget

coordination architectures based on the location where the

coordination is performed.

Client-based architecture (CliMC). In this architecture,

the client application is responsible for both request splitting

and reply aggregation. Some key-value stores including Re-

dis [1], Memcached [2], and RocksDB [7] employ this archi-

tecture. While this approach is straightforward, it increases the

complexity of the client-side logic and may cause excessive

overhead because the client should generate multiple sub-

request packets sequentially for a single multiget request. The

operation is committed only if all sub-replies are aggregated

into a single reply (i.e., all or nothing). Therefore, the time to

coordinate multiget requests in the client highly impacts the

multiget latency.

Coordinator-based architecture (CoordiMC). Several

key-value stores like Cassandra [3], DynamoDB [4], and

MongoDB [5] use a dedicated coordinator node to coordinate

multiget operations. The client only needs to communicate

with the coordinator, greatly reducing the client-side com-

plexity. However, the coordinator-based architecture is not

scalable. It easily becomes a bottleneck as the system load

increases. This is because the coordinator relies on the CPU,

which has limited performance and can handle only a few

storage servers. Therefore, if the number of servers is larger

than the capability of the coordinator, the overall performance

is degraded. Building a coordination layer with multiple nodes

can be an option, but this is not a cost-effective manner. Even

under low load, latency increases since packets have to pass

through the additional node.

�������

�	��
�

���
������
��
�

��

�

������� ����	

(a) CliMC

�����������

�

	
����

	����
��	������

�������

(b) CoordiMC

�

�

�����������	

��
���

������	
�	��	��

��
	���

(c) NetMC

Fig. 2: Different approaches for multiget coordination.

CliMC [1], [2], [7]: Client-based architecture; CoordiMC [3],

[4], [5]: Coordinator-based architecture.

C. Network-Accelerated Multiget Coordination

Key idea. We aim to build a scalable and high-performance

multiget coordination architecture. The idea to achieve the goal

is to divide the work of the multiget coordination between the

network switch and the client. We offload request splitting to

the switch while the client handles reply aggregation. The de-

sign rationale behind the idea is to consider the characteristics

of coordination functions and their vantage place where each

function can be performed best.

Why offloading request splitting? The network switch is

a well-suited location for request splitting, a stateless and I/O-

intensive function that groups keys and generates sub-request

packets for different storage servers. The switch can process

billions of packets per second with a deterministic processing

delay of only a few hundred nanoseconds. This performance is

significantly better than that of a CPU in a coordinator node,

suggesting that scalable multiget coordination can be realized

in a centralized manner. Furthermore, offloading the function

to the switch reduces the client overhead and improves latency

by calling the packet transmit function only once regardless

of the multiget size.

Meanwhile, recent programmable switch ASICs like Intel

Tofino [9], [10] enable us to realize our idea in practice. We

can customize the packet processing logic in the switch data

plane because the switch ASIC employs the Reconfigurable

Match Table (RMT) switch architecture [11]. We can parse

the packet header up to the application level and manipulate

the header fields. A packet is processed by passing through

several match-action stages where custom computation and

memory access occur.

Why not offloading reply aggregation? We let clients

handle reply aggregation as usual instead of offloading it to

the switch due to the limitations of programmable switch

ASICs. Aggregating replies requires maintaining soft states

with variable-length key-value pairs for each multiget request

until the reply is committed. However, implementing variable-

length reply aggregation on the switch is non-trivial because

of strict constraints on computational capability and memory

access: the switch can process only a few bytes of data per

stage, and each stage has only a few megabytes of static

memory. Therefore, we place the reply aggregation function

CliMC [1] CoordiMC [3] NetMC

Coordination point Client Coordinator Switch/Client
Client overhead High Low Medium
High throughput

√ × √

Low latency × × √

Scalability
√ × √

TABLE I: Comparison to existing architectures.

on the client, where stateful operations can be performed more

efficiently than in the switch data plane.

Technical challenges. Realizing switch-based request split-

ting is challenging due to the strict hardware constraints.

For example, the switch does not support loops and mod-

ulo operations for a random number. Instead of proposing

approximate in-switch techniques that might limit application

semantics [12], [13], [14], [15], we make the switch logic as

simple as possible through the client-side assistance that puts

metadata as hints into the custom packet header. With the hints

and built-in features like recirculation and cloning, we realize

the stateless in-switch request splitting.

What are the differences? Fig. 2 and Table I compare

NetMC with the existing architectures. CliMC achieves high

throughput and scalability but suffers from high latency due to

high client overhead. CoordiMC makes the client overhead low

but offers limited performance because the coordinator node

has limited scalability. It also increases latency since requests

should go through the additional node. NetMC balances the

existing approaches by placing the request splitting function

in the switch. Thanks to reduced client overhead, NetMC

can achieve low latency. Furthermore, we can achieve high

throughput and scalability since the switch has high packet

processing throughput.

III. NETMC DESIGN

In this section, we describe the design of NetMC. We first

describe the NetMC architecture and the packet format. After

that, we explain how the switch processes NetMC packets in

detail. We also discuss several issues related to our design.

A. NetMC Architecture

In Fig. 3, we illustrate the NetMC architecture comprising

the switch data plane, clients, and storage servers.

Switch data plane. The switch data plane is responsible

for request splitting, which is the core of the multiget coor-

dination. The programmable switch provides standard L2/L3

routing functions like a traditional fixed-function switch. Our

custom modules are as follows.

• Key group identification: This module identifies the cur-

rent key group and checks if there are more key groups

to process.

• Request addressing: This module assigns the IP address

of the target storage server of the current key group.

• Sub-request generation: This module generates a sub-

request using packet cloning and recirculation. The orig-

inal packet is forwarded to the target server as a sub-

request. The cloned packet visits the switch data plane

…
S������

To� S����	

L
�L�

�oR��
�

K�� ��oR�

Identification

Request

Addressing

Sub-Request

Generation

Key-Value Storage Rack

Switch

Assist

Reply

Aggregation
Clients

Fig. 3: NetMC architecture. The switch data plane performs

requests splitting with custom modules. Clients handle reply

aggregation while supporting the switch with metadata gener-

ation. Note that clients do not necessarily have to be in the

same rack as the storage servers.

again via the recirculation port so that the switch can

generate other sub-requests.

Clients and servers. In the NetMC architecture, the client

basically generates multiget requests and receives replies. We

have two custom modules as follows.

• Switch assist: This module puts extra metadata into the

packet header to help the request splitting process in the

switch data plane.

• Reply aggregation: This module aggregates sub-replies

from storage servers and merges the sub-replies into a

single multiget reply.

Meanwhile, storage servers run a lightweight application that

acts as a shim layer. When the server application receives a

message, it translates the message to necessary API calls for

the underlying key-value store and vice versa.

B. Packet Format

Fig. 4 shows the packet header format of NetMC. We

basically handle messages using UDP for better latency similar

to existing works [16], [17], [18], [19]. The NetMC header is

encapsulated as the L4 payload of the packet. This allows

NetMC to integrate with existing network protocols while

implementing our custom protocol. To distinguish NetMC

packets from normal packets, NetMC reserves an L4 port.

The switch parses the NetMC header and applies our custom

processing logic only if the L4 port number is matched. The

NetMC header consists of the following fields.

• OP (1 B): the request operation type, which can be

MGET (multiget request), GET (get request), PUT (write

request), MGET_REPLY (multiget reply), GET_REPLY

(get reply), and PUT_REPLY (write reply).

• ID (4 B): the multiget request ID shared by sub-requests

and sub-replies, used for reply aggregation.

• OID (1 B): the order of key groups in a multiget request.

The value of the field increases with each sub-request

generation.

I�O� N����� ���I�� C�O SRV1��OI� ��AR�I��

Request �ype I�� ! "#$ %& ' ()) �%
%# %&)t*) $+ $

I�� ! ,��,-t%,�.
w& $ %# $ t� "$#*

I) ,% t -/#� 0

� $+ $ I�)
to send1 #" ' ()

��E IP ��� N���C E�2��3

�45�65�7 E t� $)

��� V2������… … V2���

�t-' % I�

O$� $ #"
packets

Fig. 4: The NetMC packet format.

Algorithm 1 Multiget Request Generation at Clients

− ?:C: Packet to be processed
− B4@: Sequence number for multigets
− =: Number of servers
− : Set of requested keys
− :8 : 8th requested key in
− (: Array of server IDs for each key

1: ?:C.>? ← MGET ⊲ Set request type to multiget
2: ?:C.83 ← B4@++ ⊲ Assign a unique request ID
3: ?:C.=D<:4H ← | | ⊲ Set the total number of requested keys
4: ([8] ← HASH(:8)%=,∀8 ⊲ Set dest. server for all keys
5: Sort(() ⊲ Sort server IDs in ascending order
6: Set 8th bit to 1 in ?:C.:4H83G if (8 ≠ (8+1
7: Sort() by (⊲ Sort keys by target servers in (
8: ?:C.:4H8 ← :8 ,∀8 ⊲ Put requested keys to packet
9: ?:C.BAE: ← (unique, 9 ,∀ 9 , 9 ≤ |(| ⊲ Put server ID of key groups

10: FORWARD(?:C) ⊲ Send the packet to the switch

• NUMKEY (1 B): the number of requested keys in a

multiget request. The value of this field is updated every

sub-request generation.

• KEYIDX (2 B): the bitmap index indicating which keys

belong to the same group. This acts as a separator for

the key group identification process. The value changes

through bit shift operations with each sub-request gener-

ation.

• STARTIDX (1 B): the index of the first key in the header

from which to start reading for storage servers.

• CLO (1 B): the field indicating whether the packet was

cloned: 0 means not cloned, and 1 means cloned.

• SRV (= B): the array of destination storage server ID for

key groups, which indicates where the sub-request should

be forwarded. There are = 1-B SRV fields where = is the

number of storage servers in a rack.

C. Request Generation

In NetMC, generating requests is similar to existing archi-

tectures. However, for custom packet processing in the switch,

clients put the required metadata into the NetMC header fields,

which include OP, ID, NUMKEY, and KEYIDX.

Algorithm 1 presents the pseudocode of multiget request

generation. The client sets the operation type to MGET (line 1).

Next, the client puts the linearly-increasing sequence number

to ID as a unique multiget request ID (line 2). This ID is used

for reply aggregation in the client. The NUMKEY field is also

updated with the number of requested keys (line 3). The client

then calculates the server ID for the requested keys using a

hash function and modulo operations (line 4). Next, the client

sorts the server ID array in ascending order (line 5). Using

OP ID … NUMKEY KEYIDX SRV1 SRV2 SRV3 KEYS

MGET 1001 … 4 01112 1 2 3 A D B C

Client

① M89:;<= >= ?= @A

<= @

Server 2Server 1 Server 3

B C

② Sort keys as [A, D, B, C]

Storage servers

③

Fig. 5: Example of multiget request generation. 1 The client

generates a multiget request for keys {A,B,C,D}. 2 Server 1

stores keys A and D, server 2 stores key B, and server 3 has

key C. 3 The client then sorts the keys into {A,D,B,C} and

puts the metadata in the message header.

this, the client constructs a bitmap called KEYIDX by setting

8th bit to 1 if (8 and (8+1 are different (line 6). The 1 in the

bitmap acts as a separator between key groups when the switch

splits the request. After that, the client sorts the requested

key array (line 7), which clusters keys belonging to the same

storage server together. This clustering allows the switch to

generate sub-requests more efficiently. The requested keys are

then placed into the packet header (line 8). The client puts

the server ID of key groups into the SRV fields by extracting

unique values from ((line 9). For example, assume that we

have 32 servers, but the requested keys are for server 17 and

server 8 only. Then, the client puts 8 and 17 for the first and

second fields in 32 SRV fields. Note that we set the number

of SRV fields statically to simplify the switch logic.

Example. Fig. 5 shows an example of request generation

at clients. In this example, we consider a client who wants

to retrieve the values of keys {A,B,C,D} that are distributed

across 3 storage servers. Server 1 stores keys A and D, server

2 stores key B, and server 3 stores key C. The client generates

a multiget request with ?:C.>? = MGET and ?:C.=D<:4H = 4

since we have 4 keys to get. We assume that this is the 1001st

multiget request by setting ?:C.83 = 1001. This ID will be used

for reply aggregation. The client sorts the keys in the order

the servers store them, resulting in {A,D,B,C}. The client puts

?:C.:4H83G = 01112 based on the sorted key list. Here, each

bit corresponds to keys A, D, B, and C, respectively. Next, the

client puts the destination server ID of key group 8 into the

?:C.BAE8 field using the hash function, resulting in 1, 2, and

3, respectively.

D. Request Splitting in the Switch

The request splitting process consists of three steps: key

group identification, request addressing, and sub-request gen-

eration.

Key group identification. The first step in performing

request splitting is to group keys that are stored in the same

storage server. This is because each sub-request should contain

the keys for the corresponding key group. This typically

requires repetitive operations on multiple keys in a multiget

request. However, the current programmable switch ASIC

does not support loops to guarantee a deterministic packet

processing delay. We may leverage packet recirculation to

group keys, but this may significantly reduce throughput as the

Algorithm 2 Request Splitting in Switch Data Plane

− ?:C: Packet to be processed
− �33A)01;4: Server IP address table
− (AE��)01;4: Server ID table
− =: Number of keys in the current key group

1: if ?:C.2;> == 1 then ⊲ Cloned packet (continued splitting)
2: ?:C.>83 += 1 ⊲ Update the order of key group
3: ?:C.BC0AC83G += ?:C.=D<:4H ⊲ Point to next key group
4: end if
5: =← COMPARE(?:C.:4H83G) ⊲ Get # of keys in current group
6: ?:C.:4H83G ← ?:C.:4H83G ≪ = ⊲ Mark the cur. group as done
7: ?:C.=D<:4H ← = ⊲ Put the number of keys in the cur. group
8: ?:C.3BC�%← �33A)01;4[?:C.BAE [(AE��)01;4[?:C.>83]]]
9: if ?:C.:4H83G > 0 then ⊲ More key groups to split?

10: CLONE(?:C) ⊲ Forward sub-request and continue splitting
11: else ⊲ No more key groups to process
12: FORWARD(?:C) ⊲ Forward the last sub-request packet
13: end if

number of recirculations depends on the number of requested

keys.

We address these challenges by making the client perform

preprocessing to simplify the switch logic. Specifically, the

client groups keys by sorting the keys based on the target

storage server and puts the clustered keys into the message

header. In addition, the client puts the KEYIDX field into the

header to provide a hint to the switch. This field encodes the

grouping information as a bitmap, where each bit represents

a specific key in a multiget request. The client sets a bit to 1,

a separator between key groups. With the grouped keys and

the bitmap, the task of the switch is simplified to identify

key groups. For example, suppose a multiget request for

keys {�, �, �, �} where keys (�, �) are stored on server 1,

and keys (�,�) are stored on server 2. The client groups

keys as {(�, �), (�,�)} and constructs the KEYIDX field as

010100002 with assumption of 8-bit KEYIDX.

The switch identifies the number of keys in the current

key group by comparing the KEYIDX field with predefined

constants representing the number of keys in a key group

in order. We have = constants where = is the length of the

KEYIDX field in bits. For example, the switch knows the

number of keys for the first key group of keys (�, �) as

2 by comparing 010100002 = 80 and 010000002 = 64. The

switch puts the number of keys into the NUMKEY field to notify

the server of the number of requested keys. To prepare for

processing the next key group, the switch performs a bitwise

left shift operation on the KEYIDX field by NUMKEY. In the

example, 010100002 becomes to 010000002.

Request addressing. The second step of in-switch request

splitting is to get the IP address of the storage server to which

the current sub-request should be forwarded. A challenge

arises because we consider hash-partitioned storage where

we need to perform a modulo operation using the number

of storage servers. Unfortunately, the switch can efficiently

handle modulo operations for a power of two but cannot

perform operations with arbitrary numbers. This is problematic

since the number of storage servers in practice may not be a

power of two.

To address this challenge, we let the client precompute

Client BDFGHJP

Servers
pkt.clo=1?

UQJWXH

pkt.keyidx

YoR Z[\X]^

OP ID OID CLO STARTIDX NUMKEY KEYIDX SRV
1

SRV
2

SRV
3

KEYS

MGET 1001 1 0 0 4 0111
2

1 2 3 A D B C

UQJWXH

pkt.numkey

_

NUMKEY KEYIDX

2 1100
2

(a) Key group identification by parsing and manipulating header fields

Read

pkt.oid=1

Read

meta.SrvID=1

òR abcdef

ghijdk

pkt.dstIP

Servers

Client

liim j̀npk

SrvID

GetSRV1()

GetSRV2()

GetSRV3()

amqrs j̀npk

Action GetSRV1()={

meta.SrvID = pkt.srv1

}

DstIP

10.0.1.101

10.0.1.102

10.0.1.103

pkt.dstIP =

10.0.1.101

(b) Request addressing through match-action tables

Servers

Cloneuvxvyz{|}

pkt.keyidx=0?

~oR ��v��z

�� ID ��� CLO STARTIDX NUMKEY KEYIDX �

MGET 1001 1 0 0 2 1100� …

��|��{

pkt.clo

��v�vx��

Client
�

CLO

1

Cloned

(c) Sub-request generation using cloning and recirculation

�������

pkt.clo=1?
Servers

������

pkt.oid

�oR �� �¡¢

£¤ ID £¥¦ CLO STARTIDX NUMKEY § KEYS

MGET 1001 1 1 0 2 … A D B C

������

¨©ª«¬ª­®ª¯°±

Client
²

OID

2

STARTIDX

2

(d) Updating header fields of the cloned packet for the next key group

Fig. 6: Example of request splitting in switch data plane. The switch data plane sequentially performs (a) key group identification,

(b) request addressing, and (c) sub-request generation. If there are remaining key groups to split, the switch clones the packet

so that the original packet is forwarded to the storage server as a sub-request and the cloned packet is recirculated back to

the ingress pipeline for further processing. (d) For the recirculated clone packet, the header fields are updated to prepare the

splitting process for the next key group.

the target server ID and put it in the message header, while

the switch only maintains the mapping between the server

ID and the IP address. Specifically, the client gets the target

server ID for key groups using a hash function with a modulo

operation when generating a multiget request. The client stores

the precomputed IDs in the SRV fields of the message header.

We have SRV1,SRV2, ...,SRV= fields in the header where =

is the number of storage servers in a storage rack, which

can be configured statically. The switch has two match-action

tables to translate the server ID to the IP address. The first

match-action table extracts the server ID as metadata from the

corresponding SRV field. The OID field is a match key for the

table. Recall that the OID denotes the order of the current sub-

request (i.e., key group) in the multiget request. For example,

if OID = 1, the switch refers to SRV1 and the value in SRV1 is

extracted as metadata. The switch then looks up the extracted

server ID using the second match-action table, which maps

the server ID to the corresponding IP address. With the table,

the packet finally gets the appropriate destination IP address.

Sub-request generation. After request addressing, the

switch now generates sub-requests for each key group. A

challenge here is that the switch ASIC does not support a

function that splits a single packet into multiple packets. To

implement a request splitting function in the switch data plane,

we leverage two built-in features of the switch ASIC: packet

recirculation and packet cloning. Packet recirculation allows

the packet to revisit the ingress pipeline by passing through

an internal recirculation port. The switch can generate a copy

of the current packet using packet cloning. The cost of cloning

is small because the switch has the Packet Replication Engine

(PRE), a special hardware module that copies the packet

descriptor only, not the whole packet. There are two packet

cloning options in the programmable switch ASIC: multicast

and packet mirroring. In NetMC, we use the multicast since

it is easier to configure.

To generate sub-requests, the switch clones the packet at the

end of the ingress pipeline. Specifically, to clone the packet,

the switch specifies the multicast group ID as metadata when

the cloning function is called. The multicast group ID is

predefined by the switch control plane along with the two

output port numbers to which the original and cloned packets

should be forwarded. The original packet (i.e., the sub-request)

is forwarded to the output port directed to the target storage

server, and the cloned packet goes through the recirculation

port to revisit the ingress pipeline. As the recirculated packet

re-enters the ingress pipeline, the switch updates the OID

and STARTIDX fields as explained in Algorithm 2. The

packet then undergoes key group identification, addressing,

and cloning again. This process is continued until no key

groups are remaining in the current packet to split (i.e.,

KEYIDX = 0).

Ideally, each sub-request packet should contain only the

keys of the corresponding key group. However, the current

design does not pop the requested keys of the current key

group when generating a sub-request. Therefore, the storage

server receives the request packet with all requested keys. This

is because the switch data plane should parse the entire packet

header, including the key fields, but the switch has limited

byte depth to parse. If we parse the key fields, this may limit

the number of keys to request. We let the sub-request packet

contain all keys to avoid such limits on application semantics.

Instead, we manipulate the NUMKEY and STARTIDX fields to

make the storage server parse the key fields correctly. Note

that the request packet does not have value fields, and the

replies for sub-requests contain only key and value fields for

the corresponding key group.

Pseudocode. Algorithm 2 is the pseudocode for request

splitting in the switch data plane. Upon receiving a packet

with ?:C.>? = MGET, the switch checks the CLO field to

determine whether the packet has been previously cloned

(line 1). The cloned packet means that the current packet has

been recirculated because we have remaining sub-requests to

generate. If it is, the switch increases the OID field by 1 (line

2) and the STARTIDX field by the value of NUMKEY field (line

3). OID is used for indexing the SRV fields to get the server

ID of the current key group. STARTIDX refers to the index

of the first key of the matched key group between requested

keys by storage servers. Regardless of cloning, the switch gets

the number of keys in the current key group = by comparing

KEYIDEX and = (line 5). For example, if KEYIDX is 4 bits

and greater than 8 (indicating the most significant bit is set),

the current key group contains only one key to request. The

switch identifies the key group destined for the same server

by using a bitwise left shift operation on the KEYIDX field

to locate the position of the first 1 bit, which marks the end

of the current key group (line 6). The switch then sets the

NUMKEY field to the number of keys in this group (line 7).

Using two match-action tables to look up the server ID and the

IP address, the switch sets the destination IP address (line 8).

Next, the switch checks whether KEYIDX is positive (line 9).

If it is, the switch clones the packet because we have remaining

key groups to process (line 10). The original packet (i.e.,

the sub-request of the current key group) is forwarded to the

storage server. The cloned packet (i.e., the continued request

for remaining key groups) passes through the recirculation port

to revisit the ingress pipeline. The switch sets CLO to 1 for

the cloned packet. Otherwise, the switch simply forwards the

packet because the current packet is the last sub-request of the

multiget request. (lines 11-12).

Example. Fig. 6 illustrates the example of the request

splitting process in the switch data plane. We consider a

multiget request in Fig. 5. Upon receiving the request packet,

the switch checks the OP field and identifies it as a multiget

request. Fig. 6 (a) shows the key group identification process.

If ?:C.>? = MGET, the switch examines the CLO field, which

is initially 0, indicating that the packet is the multiget request

never been split yet. Here, ?:C.2;> = 0, hence the switch

updates the KEYIDX and NUMKEY fields as follows. Using

the bitmap in KEYIDX, the switch gets the number of keys

in the first key group by identifying that the second bit is 1,

indicating that the key group consists of two keys, A and D.

The switch then performs a bitwise left shift operation by 2 on

KEYIDX, resulting in 11002. Next, it updates NUMKEY from

4 to 2.

Fig. 6 (b) shows how the switch assigns the destination IP

address to the current sub-request. The switch first refers to

a match-action table SrvIDTable using the OID field as

the match key. SrvIDTable returns the server ID metadata

SrvID by referring to the SRVOID field. Specifically, the

switch executes an action that assigns ?:C.BAE>83 to metadata

³´ µ¶ NUMKEY … KEYS VALUES

MGET

REPLY
1001 2 … A D 11 44

Client

ID KEY
1

KEY
2

1001 B C

ID VALUE
1

VALUE
2

1001 22 33

Server 1

Aggregation Table

ID # of Remaining Keys

1001 2 · 0

KEY3 KEY4

A D

VALUE3 VALUE4

11 44

Key Array

Value Array

SubReq. Array

Fig. 7: Example of reply aggregation. The client maintains the

aggregation table. Upon receiving a reply, the client appends

key-value pairs to the corresponding slot and decreases the

number of remaining keys by NUMKEY. When it becomes zero,

the client commits the request.

<4C0.(AE��. In this example, we get <4C0.(AE�� = 1 since

?:C.BAE>83 = 1. The switch then looks up another match-action

table AddrTable using <4C0.(AE�� as the match key. As

<4C0.(AE�� = 1, the switch updates ?:C.3BC�% = 10.0.1.101.

Fig. 6 (c) shows how the switch generates sub-requests. In

this example, since ?:C.:4H83G = 11002, the switch clones the

packet to generate the sub-request for the current key group

and to continue sub-request generation for the next key group.

By assigning the multicast group ID, the packet is cloned. The

original packet is sent to server 1 with 10.0.1.101 as the sub-

request. The cloned packet is recirculated back into the ingress

pipeline for further processing. Meanwhile, the switch sets the

CLO field to 1 before cloning. For the recirculated clone, the

switch updates related header fields as shown in Fig. 6 (d).

The switch increments the STARTIDX field by the number

of keys already processed, updating it to 2, and increments

the OID to 2. The switch then continues processing from key

group identification.

E. Request Processing in the Storage Server

Upon receiving a sub-request, the server application extracts

the requested keys of the corresponding key group by reading

NUMKEY key fields starting from the index denoted in the

STARTIDX field. After that, the server returns the values

of the requested keys by translating the NetMC message

to the multiget API call of the underlying key-value stores

and vice versa (e.g., MGET in Redis [1] and getMulti

in Memcached [2]). The returned sub-reply message with

?:C.>? = MGET_REPLY only contains the key-value pairs

of the corresponding key group in the message header.

F. Reply Aggregation at Clients

The client maintains the number of remaining keys and

aggregated key-value pairs for each multiget request in the

aggregation table indexed by the ID field (i.e., multiget request

ID). The aggregation table consists of multiple arrays for keys

and values, as well as the remaining number of keys. Upon

receiving a sub-reply, the client appends the contained key-

value pairs to the aggregation table and decreases the number

of remaining keys by NUMKEY. If the remaining keys are

zero, the client commits the reply by finishing the aggregation

process.

Example. Fig. 7 depicts an example of reply aggregation

at clients. We share the scenario of Fig. 6. Here, we assume

that the client already keeps key-value pairs for keys B and C.

Now, the reply with key-value pairs for keys A and D arrives.

The client appends them alongside the key-value pairs for keys

B and C. Next, the client updates the number of remaining

keys from 2 to 0. Since every key-value pair is aggregated,

the client finally commits the request.

G. Discussion

Multi-packet requests. We consider a single-packet multi-

get request, but the request may span multiple packets if the

sum of key size exceeds the MTU size. To implement request

splitting in the switch for multi-packet requests directly, the

switch logic should be stateful and complex because we need

to maintain the required metadata like OID, STARTIDX, and

KEYIDX in the switch memory for coordination between

multiple packets. Therefore, to avoid such complexity, we let

clients generate multiple single-packet multiget requests. This

can handle many cases easily without extensively changing the

switch logic.

Multi-rack deployment. NetMC can scale out to multiple

racks as follows. In multi-rack environments, we consider

that only ToR switches perform request splitting, not spine

switches. We assume that the ToR switch connected to storage

servers performs request splitting, not the client-side ToR

switch. This is because if we split requests in the client-

side ToR switch, the overhead of managing storage server

information in the packet header may increase excessively.

We should put the switch ID into the packet header to prevent

requests from splitting by the ToR switch connected to the

client. The ToR switch maintains its ID in a register and only

applies the request splitting when its ID and that in the request

packet are matched. One assumption is that each storage rack

should contain the servers that store requested keys. To handle

cases where requested keys are located in different racks, we

should let clients generate multiple requests for different racks

by referring to the rack ID of keys, which can be obtained

using hash functions.

IV. IMPLEMENTATION

Switch data plane and controller. The switch data plane

is written in P416 [20]. The data plane is compiled to Intel

Tofino [9] using Intel P4 Studio SDE 9.7.0. Our prototype is

lightweight because the switch only performs stateless request

splitting and does not maintain any state. Specifically, the

prototype uses 5 match-action stages, 1.75% SRAM, 2.50%

Match Input Crossbar, and 2.88% Hash Bits of the ASIC

resources. We do not consume any stateful ALU. Meanwhile,

our controller in the switch control plane is written in Python

3.9.12. The controller configures the switch and manages the

rules of the match-action tables, which include tables related

to request splitting and the traditional L2/L3 packet forward

table.

Client-server applications. We implement an open-loop

client-server application in C. We use the NVIDIA Messaging

Accelerator (VMA) library [21] to reduce the packet process-

ing delay of clients, the coordinator, and storage servers. VMA

provides low latency by intercepting the socket function calls

and translating them into native RDMA verbs, allowing host

packet processing in user space while bypassing the kernel

network stack. The client application is basically responsible

for generating requests and throughput/latency measurement.

For each architecture, the client application performs extra

work. The time gap between consecutive requests follows an

exponential distribution. As a shim layer, the server applica-

tion processes incoming requests based on the request type

and returns replies to the client by retrieving the values of

requested keys. We use multiple worker threads where each

worker is pinned to a disjoint CPU core. We implement an

in-memory key-value store using TommyDS [22], a high-

performance hash table library used in an existing work [12].

We also use Redis [1] to demonstrate the efficiency of NetMC

with real-world applications.

V. EVALUATION

A. Methodology

Testbed setup. We build a testbed that consists of 8 nodes.

The nodes are interconnected via an APS Networks BF6064X-

T switch with Intel Tofino ASIC. Each node has a 10-

core (Intel i5-12600K CPU @ 3.7 GHz), 32 GB of DDR5

memory, and a 100GbE NVIDIA CX-5 NIC. The nodes run

Ubuntu 22.04 LTS with Linux kernel 6.8.0. The two nodes

act as clients. Another node is for the coordinator node The

remaining 5 nodes are designated as storage servers.

Compared schemes. We compare NetMC with CliMC [1],

[2], [7] and CoordiMC [3], [4], [5]. CliMC indicates a client-

based multiget coordination architecture where the client han-

dles both request splitting and reply aggregation. CoordiMC

refers to a coordinator-based architecture that leverages a

CPU-based coordinator node to perform request splitting and

reply aggregation.

Workloads. We consider a default workload that follows

the features observed in production workloads [8] and well-

known YCSB benchmark workloads [23]. The key distribution

follows Zipfian distributions with skewness parameters U =

0.9, 0.95, 0.99. For most experiments, we use Zipf-0.99, which

is commonly used to model a highly-skewed key access pattern

in many production workloads [24], [25]. The number of keys

for each multiget request (i.e., the multiget size) follows a

heavy-tailed distribution of a production workload where the

average size is 8.6 keys [8]. The workload has a write ratio

of 5% that reflects a common workload where read requests

dominate [14], [13]. We set the key size to 4 bytes and the

value size to 256 bytes, considering that most keys are tiny

and values are small [26], [27]. Each key-value pair is hash-

partitioned across storage servers.

B. Main Results

In this subsection, we present experimental results in the

order of throughput, latency, and scalability to show that

NetMC is the only solution that offers high throughput, low

latency, and scalability simultaneously.

Uniform Zipf-0.9 Zipf-0.95 Zipf-0.99

Skewness

0

100

200

300

400

500

T
h

ro
u

g
h

p
u

t
(K

R
P

S
) CliMC

CoordiMC
NetMC

Fig. 8: Throughput vs. skewness.

0 100 200 300 400

Throughput (KRPS)

0

100

200

400

600

5
0

%
 L

a
te

n
c
y
 (

s
)

CliMC

CoordiMC

NetMC

(a) Median latency

0 100 200 300 400

Throughput (KRPS)

0

500

1000

1500

2000

9
9

%
 L

a
te

n
c
y
 (

s
)

(b) 99th percentile latency

Fig. 9: Latency vs. throughput.

Throughput. We evaluate whether NetMC can achieve

the best throughput. We measure the throughput of each

scheme under a uniform workload and skewed workloads

with U = 0.9, 0.95, and 0.99. Fig. 8 shows the results.

Across all solutions, performance generally degrades as skew-

ness increases. However, NetMC consistently delivers the

highest throughput for all distributions by reducing client-

side overhead through request splitting in the switch. NetMC

beats CliMC and CoordiMC by 1.11× and 1.94× on average,

respectively. CliMC outperforms CoordiMC, but it still falls

short of NetMC. Meanwhile, CoordiMC shows the worst

throughput. This is because the coordinator node does not have

enough capability to handle multiple storage servers, resulting

in limited performance. These results demonstrate that NetMC

is resilient to skewness in key distributions.

Latency. We measure the median and tail latencies by

varying the Tx throughput to demonstrate that NetMC provides

low latency while supporting high throughput.

Fig. 9 shows the median and 99th percentile latencies as

a function of Rx throughput. Note that Fig. 9 (b) omits the

result for CoordiMC, as its latency exceeds the Y-axis limit.

NetMC consistently achieves the lowest latency across most

throughput levels, with the performance gap between NetMC

and the other schemes widening as throughput increases. For

example, when the throughput is around 256 KRPS, NetMC

offers lower tail latency than CliMC by 0.60×. This gap

stems from that NetMC always sends a single multiget request

regardless of system load, thanks to switch-based request

splitting. In contrast, CliMC suffers from client-side overhead

as throughput increases, due to the need for splitting and

aggregating a large number of requests/replies. CoordiMC

shows the highest latency even at low system load, as requests

and replies must pass through a coordinator node.

Scalability. We now evaluate the scalability of NetMC

against CliMC and CoordiMC to see whether NetMC can scale

1 2 3 4 5

Number of Servers

0

50

100

200

300

T
h
ro

u
g
h
p
u
t
(K

R
P

S
)

CliMC

CoordiMC

NetMC

(a) Skewed workload

1 2 3 4 5

Number of Servers

0

100

200

300

400

T
h
ro

u
g
h
p
u
t
(K

R
P

S
)

(b) Uniform workload

Fig. 10: Scalability results with the various workloads.

Uniform Zipf-0.9 Zipf-0.95 Zipf-0.99

Skewness

0

50

100

150

200

250

300

T
h

ro
u

g
h

p
u

t
(K

R
P

S
) CliMC

CoordiMC
NetMC

Fig. 11: [Redis] Throughput vs. skewness.

to multiple storage servers. In this experiment, we measure the

saturated throughput achieved by each solution by varying the

number of storage servers. We also perform experiments for

both skewed (Zipf-0.99) and uniform workloads to clarify the

impact of key distributions on the scalability results.

Fig. 10 (a) plots the throughput and the 99th percentile

latency results with the skewed workload. We can see that

NetMC provides the best throughput regardless of the number

of servers. CliMC shows lower performance than NetMC

because of the client-side overhead for request splitting. The

maximum gap between NetMC and CliMC is 1.19× when we

use two storage servers. NetMC achieves better throughput

than CoordiMC by 1.86× on average since we leverage the

high-performance switch as a multiget coordinator, which

performs better than the coordinator node of CoordiMC.

Meanwhile, we see that every solution does not provide

linearly increasing throughput. This is because of the skewness

in key distributions.

Fig. 10 (b) shows the scalability results with the uniform

workload. We can observe that the throughput of NetMC

increases linearly. CliMC also has scalable performance but is

worse than NetMC due to the client-side overhead in request

splitting. These results demonstrate that NetMC provides high

throughput and scalability simultaneously.

C. Performance with Redis

We now evaluate the performance with Redis [1] to demon-

strate that NetMC can work with real-world applications.

Redis is a widely adopted in-memory key-value store for

many production services. In this experiment, upon receiving

a request, the server gets the values of the specified keys

using MGET, a multiget command in Redis. We first measure

the throughput using different workload skewnesses. Next, we

measure the median and the 99th percentile latencies.

0 100 200 300

Throughput (KRPS)

0

200

600

1000

1400

5
0

%
 L

a
te

n
c
y
 (

s
)

CliMC

CoordiMC

NetMC

(a) Median latency

0 100 200

Throughput (KRPS)

0

2000

4000

8000

12000

9
9
%

 L
a
te

n
c
y
 (

s
)

(b) 99th percentile latency

Fig. 12: [Redis] Latency vs. throughput

0 20 40 60 80 100

Write Ratio (%)

0

200

400

800

1200

T
h

ro
u

g
h

p
u

t
(K

R
P

S
)

CliMC

CoordiMC

NetMC

(a) Throughput

0 20 40 60 80 100

Write Ratio (%)

0

3000

6000

9000

11000

9
9

%
 L

a
te

n
c
y
 (

s
)

(b) 99th percentile latency

Fig. 13: Impact of write ratio.

Throughput. Fig. 11 shows the throughput of different

solutions with different workloads. Similar to Fig. 8, we can

see that NetMC achieves the best performance for all the

distributions. NetMC performs better than CliMC by 1.15×
on average. Compared to CoordiMC, NetMC achieves better

throughput by 1.67× on average.

Latency. Fig. 12 depicts how the median and 99th percentile

latencies change as throughput grows. We can clearly see that

NetMC achieves lower latency than the other schemes, espe-

cially from moderate system loads. The latency gap between

NetMC and CliMC becomes larger as throughput increases.

For example, CliMC shows higher tail latency than NetMC

by 30.06× for the throughput of around 176 KRPS. These

results demonstrate that NetMC is effective with real-world

key-value store applications.

D. Deep Dive

Impact of write ratio. We examine the impact of the

write ratio on the throughput and latency since real-world

workloads often involve a mix of read and write requests.

In this experiment, clients measure the saturated throughput

by generating requests at different write ratios, ranging from

0% to 100% in 20% increments. We also measure the 99th

percentile latency at the near-saturated throughput of NetMC.

Fig. 13 (a) shows the throughput with various write ratios.

Our observations are as follows. First, as the write ratio

increases, the throughput of NetMC and CliMC increases.

This is because each write request contains only a single

key-value pair, unlike a read request (i.e., multiget request)

that contains multiple key-value pairs. Therefore, writes do

not require request splitting and reply aggregation, causing

no extra coordination overhead. Second, the performance gap

between NetMC and CliMC becomes narrow as the write ratio

4 8 16 32 64

Key Size (Bytes)

0

100

200

300

400

500

T
h

ro
u

g
h

p
u

t
(K

R
P

S
) CliMC

CoordiMC

NetMC

(a) Throughput

4 8 16 32 64

Key Size (Bytes)

0

1000

2000

3000

4000

9
9

%
 L

a
te

n
c
y
 (

s
)

(b) 99th percentile latency

Fig. 14: Impact of key size.

32 64 128 256 512 1024

Value Size (Bytes)

0

100

200

300

400

500

T
h

ro
u

g
h

p
u

t
(K

R
P

S
)

CliMC

CoordiMC

NetMC

(a) Throughput

32 64 128 256 512 1024

Value Size (Bytes)

0

5000

10000

15000

20000

9
9

%
 L

a
te

n
c
y
 (

s
)

(b) 99th percentile latency

Fig. 15: Impact of value size.

increases. For example, NetMC is better than CliMC by 1.31×
for the read-only workload. However, for the workload with

60% writes, the gap is only 1.08×. This is because the por-

tion of requests that experience switch-based request splitting

decreases as the write ratio increases. Meanwhile, CoordiMC

still performs the worst due to the limited performance of the

coordinator node.

Fig. 13 (b) shows the tail latency result. We omit the

result of CoordiMC since its result is beyond the Y-axis limit.

Latency gaps exist between NetMC and CliMC at low write

ratios since the client of CliMC causes more overhead to

handle requests. However, similar to the throughput result, the

difference becomes small as the write ratio increases.

Impact of key size. We evaluate the impact of key size

on the performance of NetMC. To do this, we measure the

throughput by varying the key size. We also measure the 99th

percentile latency. We consider the key sizes ranging from 4

bytes to 64 bytes. Note that most keys are generally tens of

bytes in production workloads [26].

Fig. 14 (a) shows throughput as the key size increases.

NetMC consistently achieves the highest throughput across all

the key sizes. Unlike NetMC, CoordiMC and CliMC result in

slightly degraded performance when the key size increases.

This is because the multiget coordination overhead increases

as the key size increases. Fig. 14 (b) presents the tail latency

result. CoordiMC is omitted since its result is beyond the Y-

axis limit. We can see that the latency gap increases as the

key size becomes larger. This is because, similar to Fig. 14

(a), one factor of the coordination overhead is the key size.

Impact of value size. We conduct experiments with differ-

ent value sizes similar to the key size experiment. We consider

the value size up to 1024 bytes as most values are hundreds of

bytes [26], [27]. Furthermore, 1024-byte is the typical value

1 2 4 8 16 32

Average Number of Keys

0

200

400

800

1200

T
h

ro
u

g
h

p
u

t
(K

R
P

S
)

CliMC

CoordiMC

NetMC

(a) Throughput

1 2 4 8 16 32

Average Number of Keys

0

500

1000

1500

2000

9
9

%
 L

a
te

n
c
y
 (

s
)

(b) 99th percentile latency

Fig. 16: Impact of multiget size.

size used in many existing works [19], [24], [28], [29], [30],

[31].

In Fig. 15 (a) and (b), the trend is similar to what is observed

in Fig. 14 (a) and (b). NetMC consistently delivers the best

performance across all value sizes. In contrast, both CliMC

and CoordiMC show a decline in throughput as the value

size increases, which can be attributed to the added client-side

coordination overhead. Additionally, the latency gap between

NetMC and CliMC widens with increasing value size. This is

because larger values require the client to process more data

per request and response, resulting in longer processing times

and, consequently, higher latency and degraded performance.

These findings indicate that NetMC is robust to changes in

value size.

Impact of multiget size. In this experiment, we examine

how the performance changes as the number of keys in a single

multiget request grows. We measure the throughput and the

99th percentile latency by varying the average number of keys

in a multiget request. Like other experiments, the key skewness

in the workload follows that of the production workload [8].

Fig. 16 (a) shows the throughput result. We see that through-

put decreases for all three schemes as the number of keys

increases. This is because the overhead of request splitting

and reply aggregation increases as the number of keys per

request increases. Despite this drop, NetMC maintains higher

throughput than CliMC and CoordiMC. The average gaps

between NetMC against CliMC and CoordiMC are 1.17×
and 5.28×, respectively. The gap between NetMC and CliMC

increases as the multiget size grows. When the average number

of keys is 2, the gap is only 1.03×. However, with the 32 keys

on average, NetMC is better than CliMC by 1.44×.

Fig. 16 (b) shows how the tail latency changes. The re-

sult of CoordiMC is omitted since it is beyond the Y-axis

limit. We can see latency gaps between NetMC and CliMC

grow as the multiget size increases. This is because NetMC

offloads request splitting to the network switch. When the

average multiget size is 32, CliMC is slower than NetMC by

1.55×. The experiments demonstrate that NetMC is robust to

workload dynamics in terms of the multiget size.

Performance under switch failures. We evaluate the

performance of NetMC during a switch failure scenario. In

this experiment, we intentionally stop and then reactivate the

switch to emulate a switch failure.

Fig. 17 shows the change in throughput under the switch

failure. We can see that the NetMC throughput drops sharply

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Time (second)

0

100

200

300

T
h
ro

u
g
h
p
u
t
(K

R
P

S
)

 Stop switch

Reactivate switch

Fig. 17: Throughput under switch failures.

when the switch is stopped at 8 seconds. The switch was

reactivated at 10 seconds, and throughput gradually returned

to its original level after 10 seconds of the switch being

turned back on. The downtime relies on switch hardware,

not the NetMC mechanism. Since the switch data plane in

NetMC is stateless, we have no issues with consistency. This

demonstrates that NetMC is robust to switch failures and can

quickly recover throughput.

VI. RELATED WORK

We briefly review existing works related to NetMC.

Multiget requests. Several works have been proposed

for high-performance multiget operations. ELFJ [32] is an

approximation algorithm that optimizes the distribution of

multiget requests when some requested keys are replicated

over multiple storage servers. This can be leveraged as a

theoretical foundation for the key grouping of our work when

we consider replicated storage. Rein [8] is a multiget sched-

uler that prioritizes requests with smaller execution times.

TailX [33] improves Rein by considering the load of storage

servers and the expected execution times at the same time.

These scheduling works are orthogonal to NetMC since the

problem space differs. NetMC aims at reducing the multiget

coordination overhead.

In-network acceleration for key-value stores. Recent

works have explored the potential of programmable switches

to accelerate key-value stores [12], [13], [34], [35], [14],

[36]. NetMC is in line with existing works since we also try

to accelerate key-value stores using programmable switches.

However, NetMC is different from them by considering multi-

get operations, which no existing work has addressed.

VII. CONCLUSION

This paper presented NetMC, a network-accelerated multi-

get coordination architecture that provides high throughput,

low latency, and scalability simultaneously. The key idea

of NetMC is to offload stateless and I/O-intensive request

splitting to the programmable switch while handling stateful

reply aggregation at the client. We addressed technical chal-

lenges caused by strict hardware constraints in designing a

custom switch data plane through client-side assistance. Our

experimental results demonstrated that NetMC outperforms

existing client- and coordinator-based architectures.

ACKNOWLEDGEMENT

This research was sponsored by the National Research

Foundation of Korea (NRF) grants funded by the Ministry of

Science and ICT (No. RS-2025-00522990). Gyuyeong Kim is

the corresponding author.

REFERENCES

[1] “Redis key-value store.” https://redis.io/, 2023.
[2] B. Fitzpatrick, “Distributed caching with memcached,” Linux J.,

vol. 2004, pp. 5–, Aug. 2004.
[3] “Apache cassandra.” https://cassandra.apache.org/, Last accessed date:

March 4, 2025, 2024.
[4] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,

A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” in Proc. of ACM SOSP,
(New York, NY, USA), p. 205–220, 2007.

[5] S. Zhou and S. Mu, “Fault-Tolerant replication with Pull-Based con-
sensus in MongoDB,” in Proc. of USENIX NSDI, pp. 687–703, Apr.
2021.

[6] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and
V. Venkataramani, “Scaling memcache at facebook,” in Proc. of USENIX

NSDI, (Berkeley, CA, USA), pp. 385–398, 2013.
[7] “Rocksdb: A persistent key-value store for flash and ram storage.” https:

//rocksdb.org/, 2024.
[8] W. Reda, M. Canini, L. Suresh, D. Kostić, and S. Braithwaite, “Rein:

Taming tail latency in key-value stores via multiget scheduling,” in Proc.

of ACM EuroSys, pp. 95–110, 2017.
[9] “Tofino switch.” https://github.com/barefootnetworks/Open-Tofino,

2023.
[10] “Advanced congestion & flow control with programmable

switches.” https://opennetworking.org/wp-content/uploads/2020/04/
JK-Lee-Slide-Deck.pdf, April 2020.

[11] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast
programmable match-action processing in hardware for sdn,” in Proc.

of ACM SIGCOMM, pp. 99–110, 2013.
[12] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica,

“Netcache: Balancing key-value stores with fast in-network caching,” in
Proc. of ACM SOSP, pp. 121–136, 2017.

[13] G. Kim and W. Lee, “In-network leaderless replication for distributed
data stores,” Proc. VLDB Endow., vol. 15, pp. 1337–1349, Mar. 2022.

[14] H. Zhu, Z. Bai, J. Li, E. Michael, D. R. K. Ports, I. Stoica, and X. Jin,
“Harmonia: Near-linear scalability for replicated storage with in-network
conflict detection,” Proc. VLDB Endow., vol. 13, p. 376–389, Nov. 2019.

[15] H. Zhu, T. Wang, Y. Hong, D. R. K. Ports, A. Sivaraman, and X. Jin,
“NetVRM: Virtual register memory for programmable networks,” in
Proc. of USENIX NSDI, (Renton, WA), pp. 155–170, USENIX Associ-
ation, Apr. 2022.

[16] J. Li, J. Nelson, E. Michael, X. Jin, and D. R. K. Ports, “Pegasus:
Tolerating skewed workloads in distributed storage with in-network
coherence directories,” in Proc. of USENIX OSDI, pp. 387–406, Nov.
2020.

[17] S. Sheng, H. Puyang, Q. Huang, L. Tang, and P. P. C. Lee, “FarReach:
Write-back caching in programmable switches,” in Proc. of USENIX

ATC, (Boston, MA), pp. 571–584, USENIX Association, July 2023.
[18] Z. Zhu, Y. Zhao, and Z. Liu, “In-memory key-value store live migration

with netmigrate,” in Proc. of USENIX FAST, (USA), 2024.
[19] X. Li, R. Sethi, M. Kaminsky, D. G. Andersen, and M. J. Freedman, “Be

fast, cheap and in control with switchkv,” in Proc. of USENIX NSDI,
(USA), pp. 31–44, 2016.

[20] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM

Comput. Commun. Rev., vol. 44, pp. 87–95, July 2014.

[21] “Nvidia messaging accelerator (vma).” https://docs.nvidia.com/
networking/display/vmav9840, 2024.

[22] “Tommyds c library.” https://www.tommyds.it/, 2018.

[23] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proc. of ACM

SoCC, (New York, NY, USA), p. 143–154, Association for Computing
Machinery, 2010.

[24] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky, “Mica: A holistic
approach to fast in-memory key-value storage,” in Proc, of USENIX

NSDI, (USA), p. 429–444, 2014.

[25] A. Katsarakis, V. Gavrielatos, M. S. Katebzadeh, A. Joshi, A. Drago-
jevic, B. Grot, and V. Nagarajan, “Hermes: A fast, fault-tolerant and
linearizable replication protocol,” in Proc. of ACM ASPLOS, (New York,
NY, USA), p. 201–217, 2020.

[26] J. Yang, Y. Yue, and K. V. Rashmi, “A large scale analysis of hundreds of
in-memory cache clusters at twitter,” in Proc. of USENIX OSDI, pp. 191–
208, USENIX Association, Nov. 2020.

[27] Z. Cao, S. Dong, S. Vemuri, and D. H. Du, “Characterizing, modeling,
and benchmarking rocksdb key-value workloads at facebook,” in Proc.

of USENIX FAST, (Santa Clara, CA), Feb. 2020.

[28] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy, and K. Atreya,
“Incbricks: Toward in-network computation with an in-network cache,”
in Proc. of ACM ASPLOS, (New York, NY, USA), p. 795–809, 2017.

[29] Z. Guo, H. Zhang, C. Zhao, Y. Bai, M. Swift, and M. Liu, “Leed: A
low-power, fast persistent key-value store on smartnic jbofs,” in Proc.

of ACM SIGCOMM, (New York, NY, USA), p. 1012–1027, Association
for Computing Machinery, 2023.

[30] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan,
and V. Vasudevan, “Fawn: a fast array of wimpy nodes,” in Proc. of

ACM SOSP, (New York, NY, USA), p. 1–14, Association for Computing
Machinery, 2009.

[31] B. Lepers, O. Balmau, K. Gupta, and W. Zwaenepoel, “Kvell: the design
and implementation of a fast persistent key-value store,” in Proc. of ACM

SOSP, (New York, NY, USA), p. 447–461, Association for Computing
Machinery, 2019.

[32] L.-C. Canon, A. Dugois, and L. Marchal, “Solving the restricted
assignment problem to schedule multi-get requests in key-value stores,”
in Proc. of Euro-Par, (Cham), pp. 195–209, 2024.

[33] V. Jaiman, S. Ben Mokhtar, and E. Rivière, “Tailx: Scheduling hetero-
geneous multiget queries to improve tail latencies in key-value stores,”
in Proc. of IFIP DAIS, (Berlin, Heidelberg), p. 73–92, 2020.

[34] G. Kim, “Holistic in-network acceleration for heavy-tailed storage
workloads,” IEEE Access, vol. 11, pp. 77416–77428, 2023.

[35] G. Kim, “Netclone: Fast, scalable, and dynamic request cloning for
microsecond-scale rpcs,” in Proc. of ACM SIGCOMM, p. 195–207, Sept.
2023.

[36] G. Kim, “Pushing the limits of in-network caching for key-value stores,”
in Proc. of USENIX NSDI, (Philadelphia, PA), USENIX Association,
Apr. 2025.

