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ABSTRACT

Vector databases are essential components of modern AI infras-

tructures, particularly in supporting retrieval-augmented genera-

tion (RAG) for large language model (LLM) services. Scaling these

databases in distributed and networked environments remains a

significant challenge in meeting increasing service demands. How-

ever, existing distributed vector database architectures support only

capacity scalability, not performance scalability due to query broad-

casting and result aggregation overheads. To address these limita-

tions, this paper discusses future research directions aimed at en-

abling scalable performance in distributed vector databases.
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1 SCALABILITY IN VECTOR DATABASES

Vector databases [4] have become essential infrastructure for man-

aging high-dimensional vector data inAI applications, such as large

languagemodels (LLMs) with retrieval-augmented generation (RAG).

As unstructured data continues to grow rapidly and machine learn-

ing (ML) advances, these databases store data features as vector

embeddings, enabling efficient similarity search over large-scale

datasets.

Scaling out vector databases to networked and distributed en-

vironments is a key challenge. In particular, vector database sys-

tems are expected to scale in both capacity and performance. How-

ever, existing systems such as Milvus[2] primarily focus on capac-

ity scalability. They distribute vector data across multiple nodes to

store many vector data, but do not support performance scalability.

For example, Figure 1 illustrates how Milvus handles similar-

ity search in a distributed setting. When a search query arrives,

the proxy node broadcasts it to all worker nodes that manage rel-

evant shards. Each worker independently retrieves the necessary

vector data from shared storage, performs a local top-k similarity

search, and returns its partial results to the proxy. The proxy then

merges these partial results to produce the final top-k response for

the client.

Despite employing distributed architectures, these systems suf-

fer from performance bottlenecks due to query broadcasting and

result aggregation. First, since every node should handle the same

Figure 1: Example of distributed vector search in Milvus [2]

The proxy node broadcasts search queries to the worker nodes

and aggregates partial results, limiting the performance of

distributed vector databases.

query, the throughput improvement with extra nodes is limited.

Second, the query latency is determined by the slowest worker

node due to the shared-or-nothing nature of the result aggrega-

tion. In this context, we ask the following question: how can we

achieve performance scalability in distributed vector databases?

2 RESEARCH DIRECTIONS

To achieve scalable performance, it is crucial to both minimize

the number of shards each query accesses and accelerate retrieval

within each shard. This requires similarity-aware sharding in con-

junction with a global index that spans all vectors. Such an ap-

proach allows for efficient query routing and localizednearest neigh-

bor search, thereby improving overall system scalability.

Vector indexing primer. There are three widely adopted index-

ing techniques: Inverted File (IVF), Hierarchical Navigable Small

World (HNSW), and Inverted File Product Quantization (IVF_PQ).

Figure 2 illustrates how queries are processed with IVF, HNSW,

and IVF_PQ. IVF partitions the vector space into clusters by us-

ing clustering algorithms (e.g., K-means), and the system scans

only the vectors in a few relevant clusters, effectively reducing the

search space and improving query speed. HNSW constructs a hi-

erarchical graph connecting vectors to their nearest neighbors, en-

abling fast navigation through sparse upper layers and precise re-

finement in denser lower layers. IVF_PQ combines IVF with Prod-

uct Quantization (PQ) to enable efficient similarity search in high-

dimensional vector spaces. It significantly narrows the search space

and compresses high-dimensional vectors into smaller and more

efficient representations using pre-trained codebooks.
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Figure 2: Query processes of approximate nearest neighbor search using IVF, HNSW, and IVF_PQ

Distributed, global vector indexing. While existing indexing

techniques are originally designed to improve performance within

a single server, they can be extended to distributed environments

for building global indexes. First, to minimize the number of nodes

that a request should visit, we may construct a global index by

compressing vector data and IVF centroids, which are originally

sharded across multiple shards. Each vector associated with a cen-

troid can be divided and compressed using PQ, achieving compact

storage and enabling efficient approximate vector similarity search

by determining a set of candidate destination nodes where a query

should visit. This selective querying may reduce the system loads,

improving throughput.

Early termination for fast result aggregation.To ensure bounded

query latency, early termination methods [3] can be employed. In-

stead of processing all candidate vectors, the system monitors in-

termediate results and stops the search once a predefined accuracy

or error threshold is met. Integrating early termination with index-

ing and quantization-based filtering can further eliminate unnec-

essary computation, significantly reducing query latency.

More scalabilitywith eBPF.Combining our design direction into

eBPF [1], an emerging high-performance host packet processing

technique, may further contribute to achieving high-performance

vector search in distributed environments. Specifically, we may im-

prove the performance of the proxy node that broadcasts queries

and aggregates partial results. Currently, the user-space applica-

tion processes query routing and result aggregation. With eBPF,

we may build an in-kernel proxy that works at the XDP hook,

which resides in the kernel driver layer. Compared to the user-

space processing, in-kernel processing provides lower latency and

high throughput by avoiding networking stack traversal overheads.

Specifically, by designing an eBPF program, we can track the

status of ongoing result aggregation and route queries efficiently

without traversing the host networking stack. However, several

technical challenges arise. First, eBPF does not support floating-

point operations, which are commonly required for similarity com-

putations. To address this, alternative approaches such as vector

quantization may be used to approximate computations using in-

teger arithmetic. Second, eBPF enforces static memory allocation

for safety reasons. Therefore, an efficient mechanism is required to

manage pre-allocated memory regions for accessing vector data.

3 CONCLUSION

Vector search has become a cornerstone of AI applications, includ-

ing LLMs and RAGs, making distributed vector databases indis-

pensable. However, existing systems suffer from broadcast and ag-

gregation bottlenecks. We discussed a global indexing approach

built onANN techniques combinedwith an early termination strat-

egy, which routes queries only to the necessary shards.
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