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• oad imbalance between servers

• Servers with hot items are overloaded
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• 𝑚

•

•

• 𝒌

𝑘
𝑚



• 𝑛 < 𝑚 𝑘

• 𝒏 × 𝒌

• 𝑛 = 𝑘 = 16



•

•
•

table cache_lookup{
        key = {
            pkt.key: exact;
        }
        actions = {
            cache_hit;
            cache_miss;
        }
        size = 65536;
        default_action = cache_miss;
    }



𝑛 × 𝑘
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• The time to read a stored request is impacted by other in-
flight cache packets

• Only a small number of items can be cached
• Recall that we need only 𝑂(𝑁 log𝑁) hottest items for load balancing



1. How to maintain multiple requests in the switch memory?

2. How to make a cache packet serve multiple requests once 
fetched?

3. How to ensure cache coherence?

4. How to update cache entries?



1. How to maintain multiple requests in the switch memory?

2. How to make a cache packet serve multiple requests once 
fetched?

3. How to ensure cache coherence?

4. How to update cache entries?
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• Supports per-key request queue with small memory footprints

• The table consists of a few register arrays
• Request metadata, queue length, and the front/tail pointers
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• Packet replication makes the cache packet serve more requests



• Implemented with multicast functionality
• Each multicast group ID specifis a pair of ports

• The recirculation port and the client-directed port
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