

•

•
•

•

• oad imbalance between servers

• Servers with hot items are overloaded

•
•

• 𝑂(𝑁 𝑙𝑜𝑔𝑁)
• 𝑁

•

•

•

• 𝑚

•

•

• 𝒌

𝑘
𝑚

• 𝑛 < 𝑚 𝑘

• 𝒏 × 𝒌

• 𝑛 = 𝑘 = 16

•

•
•

table cache_lookup{
 key = {
 pkt.key: exact;
 }
 actions = {
 cache_hit;
 cache_miss;
 }
 size = 65536;
 default_action = cache_miss;
 }

𝑛 × 𝑘

•

•
•

•

• The time to read a stored request is impacted by other in-
flight cache packets

• Only a small number of items can be cached
• Recall that we need only 𝑂(𝑁 log𝑁) hottest items for load balancing

1. How to maintain multiple requests in the switch memory?

2. How to make a cache packet serve multiple requests once
fetched?

3. How to ensure cache coherence?

4. How to update cache entries?

1. How to maintain multiple requests in the switch memory?

2. How to make a cache packet serve multiple requests once
fetched?

3. How to ensure cache coherence?

4. How to update cache entries?

•

•

• Supports per-key request queue with small memory footprints

• The table consists of a few register arrays
• Request metadata, queue length, and the front/tail pointers

3

1

0

0

0

1

0

1

• Packet replication makes the cache packet serve more requests

• Implemented with multicast functionality
• Each multicast group ID specifis a pair of ports

• The recirculation port and the client-directed port

•

•
•

•

•
•

• P416

•
•

•

•

•

•

•

•

•

•

•

•

• Cluster018

•

•

•

•

•

•

•

•

	Slide 1: Pushing the Limits of In-Network Caching for Key-Value Stores
	Slide 2: Distributed Key-Value Stores
	Slide 3: Item Popurarity is Highly Skewed
	Slide 4: How to Handle Load Imbalance?
	Slide 5: In-Network Caching
	Slide 6: Limitation: Too Small Cacheable Item Size
	Slide 7
	Slide 8: Memory Access in the Switch Data Plane
	Slide 9: Why Is Value Size Limited?
	Slide 10: Why Is Key Size Limited?
	Slide 11
	Slide 12: OrbitCache: Recirculation-based Caching
	Slide 13: Comparison with NetCache Architecture
	Slide 14: Trade-Off in Cache Size
	Slide 15: Technical Challenges
	Slide 16: Technical Challenges
	Slide 17: Handling Requests With Cache Hit
	Slide 18: Request Table: In-Switch Circular Queue
	Slide 19: Enqueue for Request Packets
	Slide 20: Dequeue for Cache Packets
	Slide 21: Handling Cache Packets when Requests Exists
	Slide 22: Replicating Cache Packets for Further Serving
	Slide 23: Supporting Variable-Length Keys
	Slide 24: Implementation
	Slide 25: Evaluation
	Slide 26: Throughput with Different Skewness
	Slide 27: Performance with Diverse Workloads
	Slide 28: Scalability
	Slide 29: Latency vs. Throughput
	Slide 30: Impact of Cache Size
	Slide 31: Conclusion
	Slide 32

