Pushing the Limits of In-Network
Caching for Key-Value Stores

Gyuyeong Kim

USENIX NSDI 2025

A Al)k] \| O X} q1 okl

{ \U GSHIN WOMEN'S UNIVERSITY

Distributed Key-Value Stores

* Fundamental building blocks for modern online services

« Simple and fast data access
* Requires low tail latency and high throughput

Key Value
Key1l Value1
Key2 Value2
 Data is partitioned over multiple servers Key3 |Value3

S 8 e

{A,B,C} {D,E,F} {G,H,l}

Iltem Popurarity is Highly Skewed

SuperRockStar Gyuyeong Kim

VS.

Qv
11,292,992 likes 2 likes

N

How to Handle Load Imbalance?

« Skewed item popularity causes load imbalance between servers
« Servers with hot items are overloaded

Load . I
Server 8 8

-

In-Network Caching

* Leverages programmable switches as a front load-balance cache
* NetCache [SOSP'17], DistCache [FAST'19], FarReach [ATC'23]

« Small cache, big effect: caching O(N log N) hottest items is enough
« N: # of servers/partitions, not # of items nor requests [B. Fan et al., SoCC'11]*

I Get

Cache SWItch 4—, Get(B)

Load . //

g - -

“Bin Fan, Hyeontaek Lim, David G. Andersen, and Michael Kaminsky, "Small Cache, Big Effect: Provable Load Balancing for Randomly Partitioned Cluster Services," in Proc. S
of ACM SoCC, 2011.

Limitation: Too Small Cacheable Item Size

* NetCache supports items up to 16-B keys and 128-B values

« Key-value items are small, but this is far from production workloads
* NetCache cannot cache even a single item for 42 of 54 Twitter workloads*

10s of bytes 100s of bytes

NetCache - Value

\ }
|

16 bytes 128 bytes

*Juncheng YAng, Yao Yue, and Rashmi Vinayak, "A large scale analysis of hundreds of in-memory cache clusters at Twitter," 6
in Proc. of USENIX OSDI 2020. (Dataset is publicly available in a Github repository)

How to Enable Variable-Length In-Network Caching?

Memory Access in the Switch Data Plane

« The switch data plane consists of m Match-Action (M-A) stages
» Each M-A stage has a static memory and a few ALUs
» Packets go through a chain of M-A stages
* The switch can handle k bytes per stage
I Memory (TCAM/SRAM)

> ALU m
P———————————————

— [D [| k/ —
— = = ([| —
— . = D [EED | —
— [D7 DT —
— [O B | —
— EE D ED EDV N —

Parser M-AStage M-AStage M-AStage M-AStage Deparser

Why Is Value Size Limited?

* The value is fragmented over n < m stages and each stage can handle k bytes
* The switch appends the value fragments to the packet within n x k constraint
* E.g., ifn =8and k = 16, the switch can cache values up to 128 bytes

Switch Data Plane

_||—|—|I—>

| | | [|
Key § | | | |
| |
From client i i | i |
i | Key V i | i
I I
| | key V.V V] E
I
| | i | M Key VVVVVVVYV
| 16-B | 32-B | 48B | | 128-B To client
I [I
Stage O | Stage1! Stage2 | Stage3 | | Stage 8 5

Cache lookup

Why Is Key Size Limited?

* The cache lookup table is implemented using a M-A table

* M-A table has the maximum width for the match key
* The item key is the match key of the lookup table

Limited
table cache_lookup{ { | \
key = { .
pkt.key: exact; Match Action
} (pkt.key) | (cache_hit)
actions = { A ldx=0, ...
cache _hit;
cache miss; B ldx=1, ...
} C ldx=2, ...
size = 65536; D ldx=3, ...

default action cache_miss;

It is hard to realize variable-length in-network caching,
if we stick to the concept of caching data in the switch memory

Why? n X k is determined at the time of manufacturing

Where should we cache data instead of switch memory?

OrbitCache: Recirculation-based Caching

* Idea: Keeps cached items circulating using packet recirculation

* Recirculation makes the packet visit the switch data plane again
* The switch has an internal loopback port for recirculation

* No fragments, no size limits, but data is in the switch data plane

© ~rrived w

K Val —]-
Switch Data Plane

. y
e Recirculated

Comparison with NetCache Architecture

NetCache: Requests read cached data
OrbitCache: Cached data reads stored requests

|
I

From client

OrbitCache GIRNEIEY =—>

From switch

Request Request

Request

Switch Memory

m—p NCANENEN =P To client

= NETNENEN == To client

13

Trade-Off in Cache Size

* The time to read a stored request is impacted by other in-
flight cache packets

* Only a small number of items can be cached
« Recall that we need only O(N log N) hottest items for load balancing

Recirculation port

> Cache S Stored
lookup Requests

14

Technical Challenges

1. How to maintain multiple requests in the switch memory?

2. How to make a cache packet serve multiple requests once
fetched?

3. How to ensure cache coherence?

4. How to update cache entries?

Technical Challenges

~ - T T - T - - ™~
\

1. How to maintain multiple requests in the switch memory?

2. How to make a cache packet serve multiple requests once
fetched?

\ /

——— e e EE—— E— ——— e — ——— e — ————/

'(I
| |
: |
\ |

Handling Requests With Cache Hit

* The switch drops the request after inserting it into the queue
» Requests will be handled by circulating cache packets soon

From client

0 Cache hit

9 Push req. metadata

)

B — o | —

Lookup
-/
Cache Lookup table

Drop the packet
4 anm . ©
B X

- C/

Request table

Request Table: In-Switch Circular Queue

» Supports per-key request queue with small memory footprints

* The table consists of a few register arrays
* Request metadata, queue length, and the front/tail pointers

Stage 1 —>» Stage 2 — Stage 3
Front[0]

Rear Ptr.
Cacheldx=0 - Rear[0] Rear[1]
Request > 320 |—
o 3 I T T T] sefore
—> 1 3,92 Front Ptr. =0 | I\[%‘)l || After

1 IP Seq Port Front[1]

Cache Packet R
Cacheldx=1 _

Offset

18

Enqueue for Request Packets

Stage 3
Front[1]
Stage 0 Stage 1 Stage 2 Front[0]
Cache hit Inc. queue length Inc. rear pointer
(wrap-around) l Reelr[O] Rlear[1]

Rear Ptr.

o]

2 Reqldx pata Inserted

IP Seq Port

Request Queue Len. >0
ﬁ 1

0 1

1 0
Metadata Metadata Metadata
Cacheldx=0 Cacheldx=0 Cacheldx=0 Reqldx=Cacheldx*MaxQLen+Offset
Reqgldx=0 Reqldx=0 Reqldx=0

Offset=0 Offset=0 Offset=0 MaxQlen =4

Dequeue for Cache Packets

Stage 3
Stage 0 Stage 1 Stage 2 Front[0]
he hi Dec. queue length Inc. rear pointer
Cache hit g (wrap—argund) Rear[o]l Front[1] Rear[1]

Cacheldx=1
Cache NG

21101123

0 0 4 1 5 Reqldx
N 1 —_> 1 2 L Data Removed
Front Ptr.
0 1
>1 1 [
Metadata Metadata Metadata
Cacheldx=1 Cacheldx=1 Cacheldx=1 Reqldx=Cacheldx*MaxQLen+Offset

Reqldx=0 Reqldx=0 Reqldx=5
Offset=0 Offset=0 Offset=1 MaxQlen = 4 20

Handling Cache Packets when Requests Exists

» Packet replication makes the cache packet serve more requests

e Pop request metadata
] Update packet with metadata

0 Cache hit s ~ /T
HE A

/ e Replicate the packet

COEACLIEY —»| Cache |y OB

Lookup C

. J -
Cache Lookup table Request table

Clone is recirculated

Key=A Value

From switch

Key=A Value

Original goes to the client

21

Replicating Cache Packets for Further Serving

* Implemented with multicast functionality

« Each multicast group ID specifis a pair of ports
* The recirculation port and the client-directed port

Stage 1~3

“cente |

—> | 10.0.1.102
10.0.1.103

Reqldx=0

—>

pkt.dstAddr=10.0.1.102

Stage 4

1

2

3

Multicast
Group ID

Stage 5

48,68
52,68
188,68
meta.MGID=2

Clone pkt in PRE o

Recirc.
Port
68

—>

Client
Port

52

-
Ll

22

Supporting Variable-Length Keys

» 128-bit keyhash for cache lookup table
h(A) 0

h(B)
h(C) 2

* How to resolve hash collisions?
* Detecting hash collisions at the client by comparing the maintained key and the

retrieved key
* The client gets the correct value from the storage server

OrbitCache Protocol

pkt.seq = 1
— pkt.key = AAAA } From Cache Packet
Existing Protocols
GEELEREEN o rection Request /_/R m
— (CRN-REQ) Cache logic CRN-REQ
BBBB 1 g 2 KEY VALUE
> | Bypassed |——>
—>| DDDD ~
—
ccee < 4 3 W Header Payload
- R'REP S _t h REad Rep|v Server Type REQUESt ‘ Cached? ltem
Client witc (R-REP) Sequence # Key

Hash Collision Resolution Mechanism OrbitCache Packet Format

23

Implementation

« Switch data plane

* |Intel Tofino switch ASIC
* Written in P44,

* Clients and servers
* Open-loop multi-threaded applications in C
* NVIDIA VMA for kernel-bypass packet processing
 TommyDS for in-memory key-value stores

Evaluation

* Testbed
* 6.5Tbps Intel Tofino switch

* 8 nodes with Nvidia ConnectX-5 100G NIC

* 4 nodes are clients
* 4 nodes emulate multiple storage servers with per-core partitioning

» Default workload
« 32 servers with 10M items
* 128 cached items for OrbitCache, 10K cached items for NetCache
* The Cluster018 workload of Twitter
* 82% items are cacheable by NetCache

 Compared Schemes
* NoCache (the baseline without caching)
* NetCache (X. Jin et al., SOSP"17)

A o

Throughput (MRPS)
w

o

N
T

—i
I

Throughput with Different Skewness

NoCache (uniform)

. Il NoCache |:|Orb!tCache (servers) 188 [
I et - S O
B o 150 r NOCaChe lef -0. 99
100
E 58 O 00T e
;: 150 - NetCache (zipf-0.99)
S 100
1 St N
= 150 - OrbitCache (zipf-0.99)
100]
Uniform Zipf-0.9 Zipf-0.95 Zipf-0.99 D1 HHHHHHHHHHHHHHHHHHHHWWWWHHH

Key access distributions Storage servers (sorted)

OrbitCache can balance highly skewed workloads

26

Performance with Diverse Workloads

&)

B \oCache Il NetCache [OrbitCache

N w ~

Throughput (MRPS)

o

A(23/95/95) B(10/92/43) C(2/24/24) D(0/12/12) D(Trace)
Workload(Write % / Small % / Cacheable %)

OrbitCache shows the best performance for all the workloads

27

Scalability

Still good balancing
efficiency with 64 servers

.-"‘"\5 [! }‘ 1 | | ! \

% -8-NoCache 2 U-QN\‘\‘\;

o 4+ © 0.8

B —#-NetCache 507! _

—3 “* OrbitCache = 0.6

S 0.5t

ol S04}

= Q0.3

31 ;7 S 0.2\.\t

- T 0.1]

— 0 | | s 0L— —8 —0
4 8 16 32 64 4 8 16 32 64

Number of stroage servers Number of storage servers

Scalable throughput while maintaining
reasonable balancing efficiency

28

Latency vs. Throughput

20 w . . w
--NoCache 60"
» 15 —®NetCache g
~ : =
= OrbitCache
> & 40
10 c
[2
S 5 g8 wnum 820
/ A S A
0 | | | | 0 | | | |
0 1 2 3 4 5 0o 1 2 3 4 5
~lus latency overhead Th o ghput (MRPS) Throughput (MRPS)

to serve requests

Median 99th percentile

OrbitCache achieves the best throughput
while provding comparable latency .

Impact of Cache Size

Q. | -@-Total (servers + switch) Tipping paint & 0|
S 6 —=Servers 1 Q
et Switch 230 Too many cache packets
>S4 :
_8' =00 make a bottleneck in the
o)) recirculation port
> 2 x
o
e 50 b
)\
N Q) Q) \QI qf-) (o\ \QQ/
Cache size (log scale) Cache size (log scale)
Saturated throughput ‘Overflow request ratio

OrbitCache has a trade-off in the cache size but
supports enough cache size to balance server loads

Conclusion

» OrbitCache efficiently uses packet recirculation to balance
distributed key-value stores

» Avoids hardware limitations by recirculating cache data in the form
of cache packets

* Experimental results demonstrate the efficiency of
OrbitCache for highly skewed workloads

* We provide insights that built-in switch features have great
potential to make in-network computing mechanisms more
effective

Thank you!

Questions?

gykim@sungshin.ac.kr
https://nslab.sungshin.ac.kr

	Slide 1: Pushing the Limits of In-Network Caching for Key-Value Stores
	Slide 2: Distributed Key-Value Stores
	Slide 3: Item Popurarity is Highly Skewed
	Slide 4: How to Handle Load Imbalance?
	Slide 5: In-Network Caching
	Slide 6: Limitation: Too Small Cacheable Item Size
	Slide 7
	Slide 8: Memory Access in the Switch Data Plane
	Slide 9: Why Is Value Size Limited?
	Slide 10: Why Is Key Size Limited?
	Slide 11
	Slide 12: OrbitCache: Recirculation-based Caching
	Slide 13: Comparison with NetCache Architecture
	Slide 14: Trade-Off in Cache Size
	Slide 15: Technical Challenges
	Slide 16: Technical Challenges
	Slide 17: Handling Requests With Cache Hit
	Slide 18: Request Table: In-Switch Circular Queue
	Slide 19: Enqueue for Request Packets
	Slide 20: Dequeue for Cache Packets
	Slide 21: Handling Cache Packets when Requests Exists
	Slide 22: Replicating Cache Packets for Further Serving
	Slide 23: Supporting Variable-Length Keys
	Slide 24: Implementation
	Slide 25: Evaluation
	Slide 26: Throughput with Different Skewness
	Slide 27: Performance with Diverse Workloads
	Slide 28: Scalability
	Slide 29: Latency vs. Throughput
	Slide 30: Impact of Cache Size
	Slide 31: Conclusion
	Slide 32

