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Distributed Key-Value Stores

* Fundamental building blocks for modern online services

« Simple and fast data access
* Requires low tail latency and high throughput
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Iltem Popurarity is Highly Skewed
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How to Handle Load Imbalance?

« Skewed item popularity causes load imbalance between servers
« Servers with hot items are overloaded
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In-Network Caching

* Leverages programmable switches as a front load-balance cache
* NetCache [SOSP'17], DistCache [FAST'19], FarReach [ATC'23]

« Small cache, big effect: caching O(N log N) hottest items is enough
« N: # of servers/partitions, not # of items nor requests [B. Fan et al., SoCC'11]*
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“Bin Fan, Hyeontaek Lim, David G. Andersen, and Michael Kaminsky, "Small Cache, Big Effect: Provable Load Balancing for Randomly Partitioned Cluster Services," in Proc. S
of ACM SoCC, 2011.




Limitation: Too Small Cacheable Item Size

* NetCache supports items up to 16-B keys and 128-B values

« Key-value items are small, but this is far from production workloads
* NetCache cannot cache even a single item for 42 of 54 Twitter workloads*
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*Juncheng YAng, Yao Yue, and Rashmi Vinayak, "A large scale analysis of hundreds of in-memory cache clusters at Twitter," 6
in Proc. of USENIX OSDI 2020. (Dataset is publicly available in a Github repository)



How to Enable Variable-Length In-Network Caching?



Memory Access in the Switch Data Plane

« The switch data plane consists of m Match-Action (M-A) stages
» Each M-A stage has a static memory and a few ALUs
» Packets go through a chain of M-A stages
* The switch can handle k bytes per stage
I Memory (TCAM/SRAM)
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Why Is Value Size Limited?

* The value is fragmented over n < m stages and each stage can handle k bytes
* The switch appends the value fragments to the packet within n x k constraint
* E.g., ifn =8and k = 16, the switch can cache values up to 128 bytes

Switch Data Plane

_||—|—|I—>

| | | [ |
Key § | | | |
| |
From client i i | i |
i | Key V i | i
I I
| |  key V.V V] E
I
| | i | M Key VVVVVVVYV
| 16-B | 32-B | 48B | | 128-B To client
I [ I
Stage O | Stage1! Stage2 | Stage3 | | Stage 8 5

Cache lookup



Why Is Key Size Limited?

* The cache lookup table is implemented using a M-A table

* M-A table has the maximum width for the match key
* The item key is the match key of the lookup table

Limited
table cache_lookup{ { | \
key = { .
pkt.key: exact; Match Action
} (pkt.key) | (cache_hit)
actions = { A ldx=0, ...
cache _hit;
cache miss; B ldx=1, ...
} C ldx=2, ...
size = 65536; D ldx=3, ...

default action cache_miss;



It is hard to realize variable-length in-network caching,
if we stick to the concept of caching data in the switch memory

Why? n X k is determined at the time of manufacturing

Where should we cache data instead of switch memory?



OrbitCache: Recirculation-based Caching

* Idea: Keeps cached items circulating using packet recirculation

* Recirculation makes the packet visit the switch data plane again
* The switch has an internal loopback port for recirculation

* No fragments, no size limits, but data is in the switch data plane
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Comparison with NetCache Architecture

NetCache: Requests read cached data
OrbitCache: Cached data reads stored requests
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Trade-Off in Cache Size

* The time to read a stored request is impacted by other in-
flight cache packets

* Only a small number of items can be cached
« Recall that we need only O(N log N) hottest items for load balancing

Recirculation port
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Technical Challenges

1. How to maintain multiple requests in the switch memory?

2. How to make a cache packet serve multiple requests once
fetched?

3. How to ensure cache coherence?

4. How to update cache entries?



Technical Challenges
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Handling Requests With Cache Hit

* The switch drops the request after inserting it into the queue
» Requests will be handled by circulating cache packets soon
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Request Table: In-Switch Circular Queue

» Supports per-key request queue with small memory footprints

* The table consists of a few register arrays
* Request metadata, queue length, and the front/tail pointers
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Enqueue for Request Packets
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Dequeue for Cache Packets
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Handling Cache Packets when Requests Exists

» Packet replication makes the cache packet serve more requests

e Pop request metadata
] Update packet with metadata
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Replicating Cache Packets for Further Serving

* Implemented with multicast functionality

« Each multicast group ID specifis a pair of ports
* The recirculation port and the client-directed port
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Supporting Variable-Length Keys

» 128-bit keyhash for cache lookup table
h(A) 0

h(B)
h(C) 2

* How to resolve hash collisions?
* Detecting hash collisions at the client by comparing the maintained key and the

retrieved key
* The client gets the correct value from the storage server

OrbitCache Protocol
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Implementation

« Switch data plane

* |Intel Tofino switch ASIC
* Written in P44,

* Clients and servers
* Open-loop multi-threaded applications in C
* NVIDIA VMA for kernel-bypass packet processing
 TommyDS for in-memory key-value stores



Evaluation

* Testbed
* 6.5Tbps Intel Tofino switch

* 8 nodes with Nvidia ConnectX-5 100G NIC

* 4 nodes are clients
* 4 nodes emulate multiple storage servers with per-core partitioning

» Default workload
« 32 servers with 10M items
* 128 cached items for OrbitCache, 10K cached items for NetCache
* The Cluster018 workload of Twitter
* 82% items are cacheable by NetCache

 Compared Schemes
* NoCache (the baseline without caching)
* NetCache (X. Jin et al., SOSP"17)
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OrbitCache can balance highly skewed workloads
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Performance with Diverse Workloads
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OrbitCache shows the best performance for all the workloads
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Scalability

Still good balancing
efficiency with 64 servers
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Latency vs. Throughput
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OrbitCache achieves the best throughput
while provding comparable latency .



Impact of Cache Size
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OrbitCache has a trade-off in the cache size but
supports enough cache size to balance server loads



Conclusion

» OrbitCache efficiently uses packet recirculation to balance
distributed key-value stores

» Avoids hardware limitations by recirculating cache data in the form
of cache packets

* Experimental results demonstrate the efficiency of
OrbitCache for highly skewed workloads

* We provide insights that built-in switch features have great
potential to make in-network computing mechanisms more
effective



Thank you!

Questions?

gykim@sungshin.ac.kr
https://nslab.sungshin.ac.kr
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